Blind Estimation of Motion Blur Parameters for Image Deconvolution

  • João P. Oliveira
  • Mário A. T. Figueiredo
  • José M. Bioucas-Dias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)


This paper describes an approach to estimate the parameters of a motion blur (direction and length) directly form the observed image. The motion blur estimate can then be used in a standard non-blind deconvolution algorithm, thus yielding a blind motion deblurring scheme. The estimation criterion is based on recent results about the general spectral behavior of natural images. Experimental results show that the proposed approach is able to accurately estimate both the length and orientation of motion blur kernels, even for small lengths which are traditionally difficult.


Root Mean Square Error Point Spread Function Motion Blur Blind Deconvolution Radon Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar, L., Sochen, N.A., Kiryati, N.: Variational pairing of image segmentation and blind restoration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 166–177. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bioucas-Dias, J.: Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Transactions on Image Processing 15, 937–951 (2006)CrossRefGoogle Scholar
  3. 3.
    Bioucas-Dias, J., Figueiredo, M., Oliveira, J.: Total variation-based image deconvolution: A majorization-minimization approach. In: IEEE International Conference on Acoustics, Speech, and Signal Processing - ICASSP’2006, Toulouse, France (2006)Google Scholar
  4. 4.
    Bioucas-Dias, J., Figueiredo, M., Oliveira, J.: Adaptive Bayesian/total-variation image deconvolution: A majorization-minimization approach. In: European Signal Processing Conference - EUSIPCO’2006, Florence, Italy (2006)Google Scholar
  5. 5.
    Bracewell, R.: Two-Dimensional Imaging. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  6. 6.
    Carasso, A.: Direct blind deconvolution. SIAM Journal of Applied Mathematics 1, 1980–2007 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chan, T., Wong, C.: Total variation blind deconvolution. IEEE Transactions on Image Processing 7, 370–375 (1998)CrossRefGoogle Scholar
  8. 8.
    Combettes, P., Pesquet, J.: Image deconvolution with total variation bounds. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, Paris, France, vol. 1, pp. 441–444 (2003)Google Scholar
  9. 9.
    Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. on Image Processing 12, 906–916 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Figueiredo, M., Nowak, R.: A bound optimization approach to wavelet-based image deconvolution. In: IEEE Intern. Conf. on Image Processing – ICIP’05, Genoa, Italy (2005)Google Scholar
  11. 11.
    Harrington, S.: Computer Graphics: A Programming Approach. McGraw-Hill, New York (1985)Google Scholar
  12. 12.
    Krahmer, F., Lin, Y., McAdoo, B., Ott, K., Wang, J., Widemannk, D., Wohlberg, B.: Blind image deconvolution: motion blur estimation. Technical Report, Institute of Mathematics and its Applications, University of Minnesota (2006)Google Scholar
  13. 13.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution. Signal Processing Magazine 13, 43–64 (1996)CrossRefGoogle Scholar
  14. 14.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution revisited. Signal Processing Magazine 13, 61–63 (1996)CrossRefGoogle Scholar
  15. 15.
    Moghaddam, M., Jamzad, M.: Motion blur identification in noisy images using fuzzy sets. In: Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, pp. 862–866 (2005)Google Scholar
  16. 16.
    Oliveira, J.: Implementation of an exact Radon transform. Technical Report, Instituto de Telecomunicações, Lisboa (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • João P. Oliveira
    • 1
  • Mário A. T. Figueiredo
    • 1
  • José M. Bioucas-Dias
    • 1
  1. 1.Instituto de Telecomunicações, Instituto Superior Técnico, T.U. Lisbon, Av. Rovisco Pais, 1049-001 LisboaPortugal

Personalised recommendations