Advertisement

Breast Skin-Line Segmentation Using Contour Growing

  • Robert Martí
  • Arnau Oliver
  • David Raba
  • Jordi Freixenet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

This paper presents a novel methodology to obtain the breast skin line in mammographic images. The breast edge provides important information of the breast shape and deformation which is posteriorly used by other processing techniques, typically mammographic image registration and abnormality detection. The proposed methodology is based on applying edge detection algorithms and scale space concepts. The proposed method is a particular implementation (application focused) of a growing active contour with common considerations. Quantitative and qualitative evaluation is provided to show the validity of the approach.

Keywords

Edge Detection Active Contour Seed Point Candidate Point Mammographic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Cancer Society: Breast cancer: facts and figures. 2003-04. ACS (2003)Google Scholar
  2. 2.
    Sallam, M., Bowyer, K.: Registration and difference analysis of corresponding mammogram images. Medical Image Analysis 3(2), 103–118 (1999)CrossRefGoogle Scholar
  3. 3.
    Yin, F., Giger, M., Doi, K., Vyborny, C., Schmidt, R.: Computerized detection of masses in digital mammograms: automated alignment of breast images and its effect on bilateral-subtraction technique. Med. Phys. 21(3), 445–452 (1994)CrossRefGoogle Scholar
  4. 4.
    Mendez, A., Tahoces, P., Lado, M., Souto, M., Correa, J., Vidal, J.: Automatic detection of breast border and nipple in digital mammograms. Comput. Methods Programs Biomed. 49(3), 253–262 (1998)CrossRefGoogle Scholar
  5. 5.
    Wirth, M., Nikitenko, D., Lyon, J.: Segmentation of the Breast Region in Mammograms using a Rule-Based Fuzzy Reasoning Algorithm. ICGST International Journal on Graphics, Vision and Image Processing 5(2) (2005)Google Scholar
  6. 6.
    Chandrasekhar, R., Attikiouzel, Y.: Gross segmentation of mammograms using a polynomial model. Proc. Eng. Med. and Biol. Soc. 3, 1056–1058 (1996)Google Scholar
  7. 7.
    Raba, D., Oliver, A., Martí, J., Peracaula, M., Espunya, J.: Breast segmentation with pectoral muscle suppression on digital mammograms. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 471–478. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Pan, X., Brady, M., Highnam, R., Declerck, J.: The use of multi-scale monogenic signal on structure orientation identification and segmentation. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds.) IWDM 2006. LNCS, vol. 4046, pp. 601–608. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 117–154 (1998)CrossRefGoogle Scholar
  10. 10.
    Deschênes, J., Ziou, D.: Detection of line junctions and line terminations using curvilinear features. Pattern Recognition Letters 21, 637–649 (2000)CrossRefGoogle Scholar
  11. 11.
    Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Taylor, P., Betal, D., Savage, J.: The Mammographic Image Analysis Society digital mammogram database. In: International Workshop on Digital Mammography, pp. 211–221 (1994)Google Scholar
  12. 12.
    Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital database for screening mammography. In: International Workshop on Digital Mammography (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Robert Martí
    • 1
  • Arnau Oliver
    • 1
  • David Raba
    • 1
  • Jordi Freixenet
    • 1
  1. 1.Computer Vision and Robotics Group, University of Girona, Av. Lluís Santaló 17071Spain

Personalised recommendations