Bounding the Size of the Median Graph

  • Miquel Ferrer
  • Ernest Valveny
  • Francesc Serratosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)


Median graphs have been presented as an useful tool for capturing the essential information of a set of graphs. The computation of the median graph is a complex task. Exact algorithms are, in the worst case, exponential both in the number of graphs and their size. The known bounds for the minimum and maximum number of nodes of the candidate median graphs are in general very coarse and they can be used to achieve only limited improvements in such algorithms. In this paper we present more accurate bounds based on the well-known concepts of maximum common subgraph and minimum common supergraph. These new bounds on the number of nodes can be used to improve the existing algorithms in the computation of the median graph.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  2. 2.
    Bunke, H., Münger, A., Jiang, X.: Combinatorial search versus genetic algorithms: A case study based on the generalized median graph problem. Pattern Recognition Letters 20(11-13), 1271–1277 (1999)CrossRefGoogle Scholar
  3. 3.
    Jiang, X., Münger, A., Bunke, H.: Synthesis of representative graphical symbols by computing generalized median graph. In: Chhabra, A.K., Dori, D. (eds.) GREC 1999. LNCS, vol. 1941, pp. 183–192. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Hlaoui, A., Wang, S.: A new median graph algorithm. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 225–234. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Ferrer, M., Serratosa, F., Sanfeliu, A.: Synthesis of median spectral graph. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 139–146. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Bunke, H., Allerman, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Miquel Ferrer
    • 1
  • Ernest Valveny
    • 1
  • Francesc Serratosa
    • 2
  1. 1.Computer Vision Center, Dep. Ciències de la Computació, Universitat Autònoma de Barcelona, BellaterraSpain
  2. 2.Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, TarragonaSpain

Personalised recommendations