A Tabular Pruning Rule in Tree-Based Fast Nearest Neighbor Search Algorithms

  • Jose Oncina
  • Franck Thollard
  • Eva Gómez-Ballester
  • Luisa Micó
  • Francisco Moreno-Seco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

Some fast nearest neighbor search (NNS) algorithms using metric properties have appeared in the last years for reducing computational cost. Depending on the structure used to store the training set, different strategies to speed up the search have been defined. For instance, pruning rules avoid the search of some branches of a tree in a tree-based search algorithm. In this paper, we propose a new and simple pruning rule that can be used in most of the tree-based search algorithms. All the information needed by the rule can be stored in a table (at preprocessing time). Moreover, the rule can be computed in constant time. This approach is evaluated through real and artificial data experiments. In order to test its performance, the rule is compared to and combined with other previously defined rules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st VLDB Conference, pp. 574–584 (1995)Google Scholar
  2. 2.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  3. 3.
    Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)Google Scholar
  5. 5.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software 3, 209–226 (1977)MATHCrossRefGoogle Scholar
  6. 6.
    Fukunaga, K., Narendra, P.M.: A branch and bound algorithm for computing k-nearest neighbors. IEEE Transactions on Computers, IEC 24, 750–753 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some improvements in tree based nearest neighbour search algorithms. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 456–463. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    McNames, J.: A fast nearest neighbor algorithm based on a principal axis tree. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 964–976 (2001)CrossRefGoogle Scholar
  10. 10.
    Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jose Oncina
    • 1
  • Franck Thollard
    • 2
  • Eva Gómez-Ballester
    • 1
  • Luisa Micó
    • 1
  • Francisco Moreno-Seco
    • 1
  1. 1.Dept. Lenguajes y Sistemas Informáticos, Universidad de Alicante, E-03071 AlicanteSpain
  2. 2.Laboratoire Hubert Curien (ex EURISE) - UMR CNRS 5516, 18 rue du Prof. Lauras - 42000 Saint-Étienne Cedex 2France

Personalised recommendations