Advertisement

Fuzzy Rule Based Edge-Sensitive Line Average Algorithm in Interlaced HDTV Sequences

  • Gwanggil Jeon
  • Jungjun Kim
  • Jongmin You
  • Jechang Jeong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

This paper proposes a spatial domain deinterlacing method which is based on fuzzy rule and edge-sensitive line average algorithm. The proposed algorithm consists two parts: edge direction detection part and fuzzy rule based edge-sensitive interpolation part. Once the edge direction is determined, in order to accurately reconstruct boundary of edges and peaks, edge-sensitive interpolation is utilized. Detection and interpolation results are presented. Experimental results show that the proposed algorithm provides a significant improvement over other existing deinterlacing methods.

Keywords

Deinterlacing edge-sensitive interpolation HDTV fuzzy technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Renxiang, L., Zeng, B., Liou, L.: Reliable motion detection/compensation for interlaced sequences and its applications to deinterlacing. IEEE Trans. Circuits and Systems for Video Technology 10(1), 23–29 (2000)CrossRefGoogle Scholar
  2. 2.
    Bellers, E.B., de Haan, G.: Advanced de-interlacing techniques. In: Proc. ProRisc/IEEE Workshop on Circuits, Systems and Signal Processing, Mierlo, The Netherlands, November 1996, pp. 7–17 (1996)Google Scholar
  3. 3.
    Doyle, T.: Interlaced to sequential conversion for EDTV applications. In: Proc. 2nd Int. Workshop Signal Processing of HDTV, February 1990, pp. 412–430 (1990)Google Scholar
  4. 4.
    Yoo, H., Jeong, J.: Direction-oriented interpolation and its application to de-interlacing. IEEE Trans. Consumer Electronics 8(4), 954–962 (2002)Google Scholar
  5. 5.
    Park, M.K., Kang, M.G., Nam, K., Oh, S.G.: New edge dependent deinterlacing algorithm based on horizontal edge pattern. IEEE Trans. Consumer Electronics 49(4), 1508–1512 (2003)CrossRefGoogle Scholar
  6. 6.
    Fan, Y.-C., Lin, H.-S., Tsao, H.-W., Kuo, C.-C.: Intelligent intra-field interpolation for motion compensated deinterlacing. In: Proc. ITRE 2005, vol. 3, pp. 200–203 (2005)Google Scholar
  7. 7.
    de Haan, G., Bellers, E.B.: Deinterlacing – An overview. Proceedings of the IEEE 86(9), 1839–1857 (1998)CrossRefGoogle Scholar
  8. 8.
    Jeon, G., Jeong, J.: Designing Takagi-Sugeno fuzzy model-based motion adaptive deinterlacing system. IEEE Trans. Consumer Electronics 52(3), 1013–1020 (2006)CrossRefGoogle Scholar
  9. 9.
    Oh, H.-S., Kim, Y., Jung, Y.-Y., Morales, A.W., Ko, S.-J.: Spatio-temporal edge-based median filtering for deinterlacing. In: IEEE International Conference on Consumer Electronics, pp. 52–53 (2000)Google Scholar
  10. 10.
    Chen, M.-J., Huang, C.-H., Hsu, C.-T.: Efficient de-interlacing technique by inter-field information. IEEE Trans. Consumer Electronics 50(4), 1202–1208 (2004)CrossRefGoogle Scholar
  11. 11.
    Carrato, S., Ramponi, G., Marsi, S.: A simple edge-sensitive image interpolation filter. In: Proc. of IEEE ICIP, Lausanne, September 1996, pp. 711–714 (1996)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Gwanggil Jeon
    • 1
  • Jungjun Kim
    • 1
  • Jongmin You
    • 1
  • Jechang Jeong
    • 1
  1. 1.Department of Electronics and Computer Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, SeoulKorea

Personalised recommendations