Advertisement

Word Spotting in Archive Documents Using Shape Contexts

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

The analysis of historical document images is not only interesting for the preservation of historical heritage but also for the extraction of semantic knowledge. In this paper we present a word spotting approach to find keyword images in digital archives. Detected words allow to construct metadata on document contents for indexing and retrieval purposes. Instead of using OCR based approches that would require accurate segmentation and high image quality, we propose a shape recognition method based on the well-known shape context descriptor. Our method is proven to be robust under hightly distorted and noisy document images, a usual drawback in old document analysis. It has been used in a real application scenario, the Collection of Border Records of the Girona Archive. In particular, spotted keywords are used to extract knowledge on personal data of people referred in the documents.

Keywords

Feature Point Digital Library Document Image Dynamic Time Warping Query Keyword 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyyappan, N., Chowdhury, G., Foo, S.: A review of the status of twenty digital libraries. Journal of Information Science 26(5), 337–355 (2000)CrossRefGoogle Scholar
  2. 2.
    Baird, H.S., Govindaraju, V., Lopresti, D.P.: Document analysis systems for digital libraries: Challenges and opportunities. In: Marinai, S., Dengel, A. (eds.) DAS 2004. LNCS, vol. 3163, pp. 1–16. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Antonacopoulos, A., Karatzas, D.: A complete approach to the conversion of typewritten historical documents for digital archives. In: Marinai, S., Dengel, A. (eds.) DAS 2004. LNCS, vol. 3163, pp. 90–101. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    He, J., Downton, A.: Evaluation of a user assisted archive construction system for online natural history archives. In: Proceedings of 8th Int. Conf. on Document Analysis and Recognition, Seoul, Korea, pp. 42–446 (2005)Google Scholar
  5. 5.
    Le Bourgeois, F., Kaileh, H.: Automatic metadata retrieval from ancient manuscripts. In: Marinai, S., Dengel, A. (eds.) DAS 2004. LNCS, vol. 3163, pp. 75–89. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Couasnon, B., Camillerapp, J., Leplumey, I.: Making handwritten archives documents accessible to public with a generic system of document image analysis. In: Proceedings of First International Workshop on Document Image Analysis for Libraries (DIAL04), Palo Alto, California, pp. 270–277 (2004)Google Scholar
  7. 7.
    Journet, N., Eglin, V., Ramel, J., Mullot, R.: Text/graphic labelling of ancient printed documents. In: Proceedings of 8th Int. Conf. on Document Analysis and Recognition. Seoul, Korea, pp. 1010–1014 (2005)Google Scholar
  8. 8.
    Surapong, U., Hammound, M., Garrido, C., Franco, P., Ogier, J.: Ancient graphic documents characterization. In: Proceedings of Sixth IAPR Workshop on Graphics Recognition. Hong Kong, China, pp. 97–105 (2005)Google Scholar
  9. 9.
    Tomai, C., Zhang, B., Govindaraju, V.: Transcript mapping for historic handwritten document images. In: Proc. of 8th International Workshop on Frontiers in Handwriting Recognition. Ontario, Canada, pp. 413–418 (2002)Google Scholar
  10. 10.
    Rath, T., Manmatha, R.: Word image matching using dynamic time warping. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR), Madison, WI , vol. 2, pp. 521–527 (2003)Google Scholar
  11. 11.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  12. 12.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37(1), 1–19 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Computer Vision Center - Computer Science Department, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona)Spain

Personalised recommendations