Registration-Based Segmentation Using the Information Bottleneck Method

  • Anton Bardera
  • Miquel Feixas
  • Imma Boada
  • Jaume Rigau
  • Mateu Sbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4478)

Abstract

We present two new clustering algorithms for medical image segmentation based on the multimodal image registration and the information bottleneck method. In these algorithms, the histogram bins of two registered multimodal 3D-images are clustered by minimizing the loss of mutual information between them. Thus, the clustering of histogram bins is driven by the preservation of the shared information between the images, extracting from each image the structures that are more relevant to the other one. In the first algorithm, we segment only one image at a time, while in the second both images are simultaneously segmented. Experiments show the good behavior of the presented algorithms, especially the simultaneous clustering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Upper Saddle River (2002)Google Scholar
  2. 2.
    Knops, Z., Maintz, J., Viergever, M., Pluim, J.: Normalized mutual information based registration using k-means clustering and shading correction. Medical image analysis 10(3), 432–439 (2006)CrossRefGoogle Scholar
  3. 3.
    Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. In: Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, pp. 368–377 (1999)Google Scholar
  4. 4.
    Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Proceedings of NIPS-12 (Neural Information Processing Systems), pp. 617–623. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Studholme, C.: Measures of 3D Medical Image Alignment. PhD thesis, University of London, London, UK (1997)Google Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)Google Scholar
  7. 7.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  8. 8.
    Viola, P.A.: Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Technology, Massachusetts (MA), USA (1995)Google Scholar
  9. 9.
    Burbea, J., Rao, C.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. on Information Theory 28(3), 489–495 (1982)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rigau, J., Feixas, M., Sbert, M., Bardera, A., Boada, I.: Medical image segmentation based on mutual information maximization. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 135–142. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Butz, T., Cuisenaire, O., Thiran, J.P.: Multi-modal medical image registration: from information theory to optimization objective. In: Proceeding of 14th International Conference on Digital Signal Processing, DSP’02 (2002)Google Scholar
  12. 12.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of the 9th ACM SIGKDD 2003, pp. 89–98. ACM Press, New York (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Anton Bardera
    • 1
  • Miquel Feixas
    • 1
  • Imma Boada
    • 1
  • Jaume Rigau
    • 1
  • Mateu Sbert
    • 1
  1. 1.Institut d’Informàtica i Aplicacions, Universitat de Girona 

Personalised recommendations