Face Recognition Using Principal Geodesic Analysis and Manifold Learning

  • Matthew P. Dickens
  • William A. P. Smith
  • Jing Wu
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4477)


This paper describes how face recognition can be effected using 3D shape information extracted from single 2D image views. We characterise the shape of the field of facial normals using a statistical model based on principal geodesic analysis. The model can be fitted to 2D brightness images of faces to recover a vector of shape parameters. Since it captures variations in a field of surface normals, the dimensionality of the shape vector is twice the number of image pixels. We investigate how to perform face recognition using the output of PGA by applying a number of dimensionality reduction techniques including principal components analysis, locally linear embedding, locality preserving projection and Isomap.


Face Recognition Recognition Performance Rand Index Locally Linear Embedding Locality Preserve Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turk, M., Pentland, A.P.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Blantz, V., Vetter, T.: Face Recognition Based on Fitting a 3D Morphable Model. IEEE PAMI 25(9), 1063–1074 (2003)Google Scholar
  4. 4.
    Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE PAMI 25(2), 218–233 (2003)Google Scholar
  5. 5.
    Belhumeur, P.N., Kriegman, D.J.: What Is the Set of Images of an Object Under All Possible Illumination Conditions? IJCV 28(3), 245–260 (1998)CrossRefGoogle Scholar
  6. 6.
    Smith, W., Hancock, E.R.: Recovering Facial Shape using a Statistical Model of Surface Normal Direction. IEEE PAMI 28(12), 1914–1930 (2006)Google Scholar
  7. 7.
    Smith, W., Hancock, E.R.: Face Recognition using 2.5D Shape Information. In: IEEE CVPR, pp. 1407–1414 (2006)Google Scholar
  8. 8.
    Pennec, X.: Probabilities and statistics of Riemannian manifolds: A geometric approach, Research Report RR-5093, INRIA (2004)Google Scholar
  9. 9.
    Fletcher, P.T., Joshi, S., Lu, C., Pizer, S.M.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  10. 10.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Quarterly of Applied Mathematics XLV, 561–590 (1987)Google Scholar
  11. 11.
    Worthington, P.L., Hancock, E.R.: New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE PAMI 21(12), 1250–1267 (1999)Google Scholar
  12. 12.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  13. 13.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  14. 14.
    He, X., Niyogi, P.: Locality preserving projections. Technical Report TR-2002-09, University of Chicago Computer Science (2002)Google Scholar
  15. 15.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14 (2001)Google Scholar
  16. 16.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE PAMI 23(6), 642–660 (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Matthew P. Dickens
    • 1
  • William A. P. Smith
    • 1
  • Jing Wu
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer Science, The University of York 

Personalised recommendations