Advertisement

Hardware Implementation of Moment Functions in a CMOS Retina: Application to Pattern Recognition

  • Olivier Aubreton
  • Lew Fock Chong Lew Yan Voon
  • Matthieu Nongaillard
  • Guy Cathebras
  • Cédric Lemaitre
  • Bernard Lamalle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4477)

Abstract

We present in this paper a method for implementing moment functions in a CMOS retina for object localization, and pattern recognition and classification applications. The method is based on the use of binary patterns and it allows the computation of different moment functions such as geometric and Zernike moments of any orders by an adequate choice of the binary patterns. The advantages of the method over other methods described in the literature are that it is particularly suitable for the design of a programmable retina circuit where moment functions of different orders are obtained by simply loading the correct binary patterns into the memory devices implemented on the circuit. The moment values computed by the method are approximate values, but we have verified that in spite of the errors the approximate values are significant enough to be applied to classical shape localization and shape representation and description applications.

Keywords

Memory Device Hardware Implementation Moment Function Zernike Moment Shape Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mukundan, R., Ramakrishnan, K.R.: Moment functions in image analysis – Theory and applications. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  2. 2.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Standley, D.L.: An Object Position and Orientation IC With Embedded Imager. IEEE Journal Of Solid State Circuits 26(12), 1853–1859 (1991)CrossRefGoogle Scholar
  4. 4.
    Yu, N.M., Shibata, T., Ohmi, T.: A real time center of mass tracker circuit implemented by neuron MOS technology. IEEE Trans. on Circuits and Systems 45 (1998)Google Scholar
  5. 5.
    Cummings, R.E., Gruev, V., Abdel, M.G.: VLSI implementation of motion centroid localization for autonomous navigation. Adv. Neural Inf. Process. Syst. 45 (1998)Google Scholar
  6. 6.
    Deweerth, S.P.: Analog VLSI Circuits For Stimulus Localization and Centroid. International Journal of Computer Vision 8, 191–202 (1992)CrossRefGoogle Scholar
  7. 7.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on Inf. Theory 8(1), 179–187 (1962)Google Scholar
  8. 8.
    Pappas, T.N., Allebach, J.P., Neuhoff, D.L.: Model Based Digital Halftonning. IEEE Signal Processing Magazine 20(4), 14–27 (2003)CrossRefGoogle Scholar
  9. 9.
    Floyd, R.W., Steinberg, L.: An adaptative algorithm for spatial grey scale. Proc. of Society for Information Display 17(2), 75–77 (1976)Google Scholar
  10. 10.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, University of Columbia (Feb. 1996), http://www1.cs.columbia.edu/CAVE/databases/
  11. 11.
    Aubreton, O.: Rétines à masques: Utilisation de masques binaires pour l’implantation d’un opérateur de reconnaissance de forme dans une rétine CMOS. Ph.D. thesis, Université de Bourgogne, France (Dec 2004)Google Scholar
  12. 12.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Analysis Machine Intelligence 10(4), 496–513 (1988)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Olivier Aubreton
    • 1
  • Lew Fock Chong Lew Yan Voon
    • 1
  • Matthieu Nongaillard
    • 1
  • Guy Cathebras
    • 3
  • Cédric Lemaitre
    • 2
  • Bernard Lamalle
    • 1
  1. 1.Laboratoire LE2I – UMR CNRS 5158, 12 rue de la fonderie, 71200 Le CreusotFrance
  2. 2.Laboratoire LE2I – UMR CNRS 5158, BP 47870, 21078 DIJON CedexFrance
  3. 3.Laboratoire LIRMM - UMR 5506, 161, rue Ada, 34392 Montpellier Cedex 5France

Personalised recommendations