Fast Stochastic Context-Free Parsing: A Stochastic Version of the Valiant Algorithm

  • José-Miguel Benedí
  • Joan-Andreu Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4477)

Abstract

In this work, we present a fast stochastic context-free parsing algorithm that is based on a stochastic version of the Valiant algorithm. First, the problem of computing the string probability is reduced to a transitive closure problem. Then, the closure problem is reduced to a matrix multiplication problem of matrices of a special type. Afterwards, some fast algorithm can be used to solve the matrix multiplication problem. Preliminary experiments show that, in practice, an important time savings can be obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics 21(2), 165–200 (1995)MathSciNetGoogle Scholar
  2. 2.
    Benedí, J., Sánchez, J.: Estimation of stochastic context-free grammars and their use as language models. Computer Speech and Language 19(3), 249–274 (2005)CrossRefGoogle Scholar
  3. 3.
    Ney, H.: Stochastic grammars and pattern recognition. In: Laface, P., Mori, R.D. (eds.) Speech Recognition and Understanding. Recent Advances, pp. 319–344. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjölander, K., Underwood, R., Haussle, D.: The application of stochastic context-free grammars to folding, aligning and modeling homologous rna. Computer and Information Science UCSC-CRL-94-14, Univ. of California, Santa Cruz, CA (1993)Google Scholar
  5. 5.
    Baker, J.: Trainable grammars for speech recognition. In: Klatt, D.H., Wolf, J.J. (eds.) Speech Communications for the 97th Meeting of the Acoustical Society of America, pp. 31–35. Acoustical Society of America (1979)Google Scholar
  6. 6.
    Valiant, L.: General context-free recognition in less than cubic time. Journal of computer and system sciences 10, 308–315 (1975)MATHMathSciNetGoogle Scholar
  7. 7.
    Lee, L.: Fast context-free grammar parsing requires fast boolean matrix multiplication. Journal of the ACM 49(1), 1–15 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Rytter, W.: Context-free recognition via shortest paths computation: a version of valiant’s algorithm. Theoretical Computer Science 143, 343–352 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goodman, J.: Semiring parsing. Computational Linguistics 25(4), 573–605 (1999)MathSciNetGoogle Scholar
  12. 12.
    Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, London (1978)MATHGoogle Scholar
  13. 13.
    Marcus, M., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus of english: the penn treebank. Computational Linguistics 19(2), 313–330 (1993)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • José-Miguel Benedí
    • 1
  • Joan-Andreu Sánchez
    • 1
  1. 1.Universidad Politécnica de Valencia, 46022 Valencia (Spain) 

Personalised recommendations