Human Motion Characterization Using Spatio-temporal Features

  • Manuel J. Lucena
  • José Manuel Fuertes
  • Nicolás Pérez de la Blanca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4477)


Local space-time features can be used to detect and characterize motion events in video. Such features are valid for recognizing motion patterns, by defining a vocabulary of primitive features, and representing each video sequence by means of a histogram, in terms of such vocabulary. In this paper, we propose a supervised vocabulary computation technique which is based on the prior classification of the training events into classes, where each class corresponds to a human action. We will compare the performance of our method with the global approach to show that not only does our method obtain better results but it is also computationally less expensive.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buxton, H.: Learning and understanding dynamic scene activity: A review. Image and Vision Computing 21(1), 125–136 (2003)CrossRefGoogle Scholar
  2. 2.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. Transaction on Systems, Man and Cybernetics 34(3), 334–352 (2004)CrossRefGoogle Scholar
  3. 3.
    Moeslund, T., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 90–126 (2006)CrossRefGoogle Scholar
  4. 4.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 77–116 (1998)Google Scholar
  5. 5.
    Nagel, H.-H., Gehrke, A.: Spatiotemporally adaptive estimation and segmentation of OF-fields. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, p. 86. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local SVM approach. In: Proceedings of ICPR, Cambridge, UK, vol. 3, pp. 32–36 (2004)Google Scholar
  7. 7.
    Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse Spatio-Temporal Features. In: Proc. VS–PETS, pp. 65–72 (2005)Google Scholar
  8. 8.
    Laptev, I., Lindeberg, T.: Velocity adaptation of spatio-temporal receptive fields for direct recognition of activities: an experimental study. Image and Vision Computing 22, 105–116 (2004)CrossRefGoogle Scholar
  9. 9.
    Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2/3), 107–123 (2005)CrossRefGoogle Scholar
  10. 10.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of The Fourth Alvey Vision Conference, Manchester, UK, pp. 147–151 (1988)Google Scholar
  11. 11.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 19(5), 151–172 (2000)CrossRefGoogle Scholar
  12. 12.
    Koenderink, J.: Scale-time. Biological Cybernetics 58, 159–162 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Florack, L.: Image Structure. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  14. 14.
    Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proc. Computer Vision and Pattern Recognition (2001)Google Scholar
  15. 15.
    Laptev, I., Lindeberg, T.: Space-time interest points. In: Proc. ICCV, pp. 432–439 (2003)Google Scholar
  16. 16.
    Laptev, I., Lindeberg, T.: Velocity adaptation of space-time interest points. In: Proc. ICPR, Cambridge, UK, vol. 1, pp. 52–56 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Manuel J. Lucena
    • 1
  • José Manuel Fuertes
    • 1
  • Nicolás Pérez de la Blanca
    • 2
  1. 1.University of Jaén (Spain) 
  2. 2.University of Granada (Spain) 

Personalised recommendations