Better Landmarks Within Reach

  • Andrew V. Goldberg
  • Haim Kaplan
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4525)

Abstract

We present significant improvements to a practical algorithm for the point-to-point shortest path problem on road networks that combines A* search, landmark-based lower bounds, and reach-based pruning. Through reach-aware landmarks, better use of cache, and improved algorithms for reach computation, we make preprocessing and queries faster while reducing the overall space requirements. On the road networks of the USA or Europe, the shortest path between two random vertices can be found in about one millisecond after one or two hours of preprocessing. The algorithm is also effective on two-dimensional grids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast, H., Funke, S., Matijevic, D.: TRANSIT: Ultrafast shortest-path queries with linear-time preprocessing. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  2. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Proc. 9th ALENEX. SIAM, (2007), Available at http://www.mpi-inf.mpg.de/~bast/tmp/transit.pdf
  3. Delling, D., Holzer, M., Muller, K., Schulz, F., Wagner, D.: High-performance multi-level graphs. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  4. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  5. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: 9th DIMACS Implementation Challenge: Shortest Paths (2006), http://www.dis.uniroma1.it/~challenge9/
  6. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numer. Math. 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  7. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. In: Proc. 42nd FOCS, pp. 232–241 (2001)Google Scholar
  8. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory. In: Proc. 16th SODA, pp. 156–165 (2005)Google Scholar
  9. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  10. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Efficient Point-to-Point Shortest Path Algorithms. In: Proc. 8th ALENEX. SIAM (2006)Google Scholar
  11. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from External Memory. In: Proc. 7th ALENEX, SIAM pp. 26–40(2005)Google Scholar
  12. Gutman, R.: Reach-based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks. In: Proc. 6th ALENEX, pp. 100–111 (2004)Google Scholar
  13. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on System Science and Cybernetics, vol. SSC-4(2) (1968)Google Scholar
  14. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest path computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 26–38. Springer, Heidelberg (2005)Google Scholar
  15. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path computations with arc-flags. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  16. Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geographical Background. In: IfGIprints 22, Institut fuer Geoinformatik, Universitaet Muenster, pp. 219–230 (2004) (ISBN 3-936616-22-1)Google Scholar
  17. Lauther, U.: An experimental evaluation of point-to-point shortest path calculation on roadnetworks with precalculated edge-flags. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  18. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speed up Dijkstra’s algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 89–202. Springer, Heidelberg (2005)Google Scholar
  19. Sanders, P., Schultes, D.: Fast and Exact Shortest Path Queries Using Highway Hierarchies. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. Sanders, P., Schultes, D.: Robust, almost constant time shortest-path queries on road networks. In: 9th DIMACS Implementation Challenge (2006)Google Scholar
  22. Schultes, D.: Fast and Exact Shortest Path Queries Using Highway Hierarchies. Master’s thesis, Department of Computer Science, Universität des Saarlandes, Germany (2005)Google Scholar
  23. Schulz, F., Wagner, D., Weihe, K.: Using Multi-Level Graphs for Timetable Information. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)Google Scholar
  24. Tarjan, R.E.: Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA (1983)Google Scholar
  25. Wagner, D., Willhalm, T.: Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andrew V. Goldberg
    • 1
  • Haim Kaplan
    • 2
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon Valley, 1065 La Avenida, Mountain View, CA 94043USA
  2. 2.School of Mathematical Sciences, Tel Aviv UniversityIsrael

Personalised recommendations