Engineering Fast Route Planning Algorithms

  • Peter Sanders
  • Dominik Schultes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4525)

Abstract

Algorithms for route planning in transportation networks have recently undergone a rapid development, leading to methods that are up to one million times faster than Dijkstra’s algorithm. We outline ideas, algorithms, implementations, and experimental methods behind this development. We also explain why the story is not over yet because dynamically changing networks, flexible objective functions, and new applications pose a lot of interesting challenges.

Keywords

Short Path Road Network Target Node Query Time Route Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  2. Thorup, M.: Integer priority queues with decrease key in constant time and the single source shortest paths problem. In: 35th ACM Symposium on Theory of Computing, pp. 149–158. ACM Press, New York (2003)Google Scholar
  3. Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear average-case time. In: 12th Symposium on Discrete Algorithms. pp. 797–806 (2001)Google Scholar
  4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1962)Google Scholar
  5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on System Science and Cybernetics 4(2), 100–107 (1968)CrossRefGoogle Scholar
  6. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A * meets graph theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165. ACM Press, New York (2005)Google Scholar
  7. Ishikawa, K., Ogawa, M., Azume, S., Ito, T.: Map Navigation Software of the Electro Multivision of the ’91 Toyota Soarer. In: IEEE Int. Conf. Vehicle Navig, pp. 463–473. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  8. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. Klein, P.: Multiple-source shortest paths in planar graphs. In: 16th ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 146–155 (2005)Google Scholar
  10. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. In: 42nd IEEE Symposium on Foundations of Computer Science, pp. 242–251. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  11. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)Google Scholar
  12. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: 6th Workshop on Algorithm Engineering and Experiments. pp. 100–111 (2004)Google Scholar
  13. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A *: Efficient point-to-point shortest path algorithms. In: Workshop on Algorithm Engineering & Experiments, Miami, pp. 129–143 (2006)Google Scholar
  16. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: 6th Workshop on Experimental Algorithms (2007)Google Scholar
  17. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: Workshop on Algorithm Engineering and Experiments (2007)Google Scholar
  18. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science (to appear 2007)Google Scholar
  19. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)Google Scholar
  20. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Geoinformation und Mobilität – von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints, Institut für Geoinformatik, Münster (2004)Google Scholar
  21. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest path computation. In: 4th International Workshop on Efficient and Experimental Algorithms (2005)Google Scholar
  22. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to speed up Dijkstra’s algorithm. In: 4th International Workshop on Efficient and Experimental Algorithms. pp. 189–202 (2005)Google Scholar
  23. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path computations with arc-flags. In: 9th DIMACS Implementation Challenge [29] (2006)Google Scholar
  24. Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algorithm. In: Workshop on Algorithm Engineering and Experimentation. pp. 26–40 (2005)Google Scholar
  25. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using Precomputed Cluster Distances. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 316–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-path computations. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 269–284. Springer, Heidelberg (2004)Google Scholar
  27. Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs. PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik (2005)Google Scholar
  28. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS Implementation Challenge [29] (2006)Google Scholar
  29. 9th DIMACS Implementation Challenge: Shortest Paths. http://www.dis.uniroma1.it/~challenge9 (2006)
  30. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for shortest-path queries. invited for ACM Journal of Experimental Algorithmics (special issue Alenex 2006) (2007)Google Scholar
  31. Lauther, U.: An experimental evaluation of point-to-point shortest path calculation on roadnetworks with precalculated edge-flags. In: 9th DIMACS Implementation Challenge [29] (2006)Google Scholar
  32. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: 9th DIMACS Implementation Challenge [29] (2006)Google Scholar
  33. Müller, K.: Design and implementation of an efficient hierarchical speed-up technique for computation of exact shortest paths in graphs. Master’s thesis, Universtät Karlsruhe supervised by Delling, D., Holzer, M., Schulz, F., Wagner, D.: (2006)Google Scholar
  34. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level graphs. In: 9th DIMACS Implementation Challenge [29] (2006)Google Scholar
  35. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-many shortest paths using highway hierarchies. In: Workshop on Algorithm Engineering and Experiments (2007)Google Scholar
  36. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: 6th Workshop on Experimental Algorithms (2007)Google Scholar
  37. Bingmann, T.: Visualisierung sehr großer Graphen. Student Research Project, Universität Karlsruhe, supervised by Sanders, P., Schultes, D.: (2006)Google Scholar
  38. U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line Files. http://www.census.gov/geo/www/ tiger/tigerua/ua_tgr2k.html (2002)

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Peter Sanders
    • 1
  • Dominik Schultes
    • 1
  1. 1.Universität Karlsruhe (TH), 76128 KarlsruheGermany

Personalised recommendations