Role of Ena/VASP Proteins in Homeostasis and Disease

  • G. Pula
  • M. Krause
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 186)


The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aktas B, Utz A, Hoenig-Liedl P, Walter U, Geiger J (2003) Dipyridamole enhances NO/cGMPmediated vasodilator-stimulated phosphoprotein phosphorylation and signaling in human platelets: in vitro and in vivo/ex vivo studies. Stroke 34:764–769PubMedGoogle Scholar
  2. Allen LA, Aderem A (1996) Mechanisms of phagocytosis. Curr Opin Immunol 8:36–40PubMedGoogle Scholar
  3. Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fassler R (1999) The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. Embo J 18:37–48PubMedGoogle Scholar
  4. Azizzadeh B, Buga GM, Berke GS, Larian B, Ignarro LJ, Blackwell KE (2003) Inhibitors of nitric oxide promote microvascular thrombosis. Arch Facial Plast Surg 5:31–35PubMedCrossRefGoogle Scholar
  5. Bachmann C, Fischer L, Walter U, Reinhard M (1999) The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274:23549–23557PubMedGoogle Scholar
  6. Ball LJ, Kuhne R, Hoffmann B, Hafner A, Schmieder P, Volkmer-Engert R, Hof M, Wahl M, Schneider-Mergener J, Walter U, Oschkinat H, Jarchau T (2000) Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J 19:4903–4914PubMedGoogle Scholar
  7. Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, Schafer DA (2005) Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 280:28653–28662PubMedGoogle Scholar
  8. Bashaw GJ, Kidd T, Murray D, Pawson T, Goodman CS (2000) Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101:703–715PubMedGoogle Scholar
  9. Baum B, Perrimon N (2001) Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat Cell Biol 3:883–890PubMedGoogle Scholar
  10. Bear JE, Loureiro JJ, Libova I, Fassler R, Wehland J, Gertler FB (2000) Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101:717–728PubMedGoogle Scholar
  11. Bear JE, Krause M, Gertler FB (2001) Regulating cellular actin assembly. Curr Opin Cell Biol 13:158–166PubMedGoogle Scholar
  12. Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521PubMedGoogle Scholar
  13. Boukhelifa M, Parast MM, Bear JE, Gertler FB, Otey CA (2004) Palladin is a novel binding partner for Ena/VASP family members. Cell Motil Cytoskeleton 58:17–29PubMedGoogle Scholar
  14. Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D (2006) Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 98:279–293PubMedGoogle Scholar
  15. Brindle NP, Holt MR, Davies JE, Price CJ, Critchley DR (1996) The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin. Biochem J 318:753–757PubMedGoogle Scholar
  16. Broeders MA, Tangelder GJ, Slaaf DW, Reneman RS, Egbrink MG (1998) Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterioscler Thromb Vasc Biol 18:139–145PubMedGoogle Scholar
  17. Bundschu K, Walter U, Schuh K (2006) The VASP-Spred-Sprouty domain puzzle. J Biol Chem 281:36477–36481PubMedGoogle Scholar
  18. Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269:14509–14517PubMedGoogle Scholar
  19. Carl UD, Pollmann M, Orr E, Gertlere FB, Chakraborty T, Wehland J (1999) Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr Biol 9:715–718PubMedGoogle Scholar
  20. Chakraborty T, Ebel F, Domann E, Niebuhr K, Gerstel B, Pistor S, Temm-Grove CJ, Jockusch BM, Reinhard M, Walter U et al (1995) A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14:1314–1321PubMedGoogle Scholar
  21. Chen L, Daum G, Chitaley K, Coats SA, Bowen-Pope DF, Eigenthaler M, Thumati NR, Walter U, Clowes AW (2004) Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1403–1408PubMedGoogle Scholar
  22. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 296:539–541PubMedGoogle Scholar
  23. Chereau D, Dominguez R (2006) Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J Struct Biol 155:195–201PubMedGoogle Scholar
  24. Chitaley K, Chen L, Galler A, Walter U, Daum G, Clowes AW (2004) Vasodilator-stimulated phosphoprotein is a substrate for protein kinase C. FEBS Lett 556:211–215PubMedGoogle Scholar
  25. Comer AR, Ahern-Djamali SM, Juang JL, Jackson PD, Hoffmann FM (1998) Phosphorylation of Enabled by the Drosophila Abelson tyrosine kinase regulates the in vivo function and protein–protein interactions of Enabled. Mol Cell Biol 18:152–160PubMedGoogle Scholar
  26. Cook AL, Haynes JM (2007) Phosphorylation of the PKG substrate, vasodilator-stimulated phosphoprotein (VASP), in human cultured prostatic stromal cells. Nitric Oxide 16:10–17PubMedGoogle Scholar
  27. Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS (2001) Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis. J Cell Sci 114:4307–4318PubMedGoogle Scholar
  28. Crawford AW, Beckerle MC (1991) Purification and characterization of zyxin, an 82, 000-dalton component of adherens junctions. J Biol Chem 266:5847–5853PubMedGoogle Scholar
  29. Crittenden JR, Bergmeier W, Zhang Y, Piffath CL, Liang Y, Wagner DD, Housman DE, Graybiel AM (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med 10:982–986PubMedGoogle Scholar
  30. Dahl E, Sadr-Nabavi A, Klopocki E, Betz B, Grube S, Kreutzfeld R, Himmelfarb M, An HX, Gelling S, Klaman I, Hinzmann B, Kristiansen G, Grutzmann R, Kuner R, Petschke B, Rhiem K, Wiechen K, Sers C, Wiestler O, Schneider A, Hofler H, Nahrig J, Dietel M, Schafer R, Rosenthal A, Schmutzler R, Durst M, Meindl A, Niederacher D (2005) Systematic identification and molecular characterization of genes differentially expressed in breast and ovarian cancer. J Pathol 205:21–28PubMedGoogle Scholar
  31. Danielewski O, Schultess J, Smolenski A (2005) The NO/cGMP pathway inhibits Rap 1 activation in human platelets via cGMP-dependent protein kinase I. Thromb Haemost 93:319–325PubMedGoogle Scholar
  32. DeMali KA, Barlow CA, Burridge K (2002) Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159:881–891PubMedGoogle Scholar
  33. Dertsiz L, Ozbilim G, Kayisli Y, Gokhan GA, Demircan A, Kayisli UA (2005) Differential expression of VASP in normal lung tissue and lung adenocarcinomas. Thorax 60:576–581PubMedGoogle Scholar
  34. Di Modugno F, Bronzi G, Scanlan MJ, Del Bello D, Cascioli S, Venturo I, Botti C, Nicotra MR, Mottolese M, Natali PG, Santoni A, Jager E, Nistico P (2004) Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response. Int J Cancer 109:909–918PubMedGoogle Scholar
  35. Drees B, Friederich E, Fradelizi J, Louvard D, Beckerle MC, Golsteyn RM (2000) Characterization of the interaction between zyxin and members of the Ena/vasodilator-stimulated phosphoprotein family of proteins. J Biol Chem 275:22503–22511PubMedGoogle Scholar
  36. Egbrink MG, Van Gestel MA, Broeders MA, Tangelder GJ, Heemskerk JM, Reneman RS, Slaaf DW (2005) Regulation of microvascular thromboembolism in vivo. Microcirculation 12:287–300PubMedGoogle Scholar
  37. Eigenthaler M, Ullrich H, Geiger J, Horstrup K, Honig-Liedl P, Wiebecke D, Walter U (1993) Defective nitrovasodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase-deficient human platelets of chronic myelocytic leukemia. J Biol Chem 268:13526–13531PubMedGoogle Scholar
  38. Eigenthaler M, Engelhardt S, Schinke B, Kobsar A, Schmitteckert E, Gambaryan S, Engelhardt CM, Krenn V, Eliava M, Jarchau T, Lohse MJ, Walter U, Hein L (2003) Disruption of cardiac Ena-VASP protein localization in intercalated disks causes dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 285:H2471–H2481PubMedGoogle Scholar
  39. Eppert K, Wunder JS, Aneliunas V, Tsui LC, Scherer SW, Andrulis IL (2005) Altered expression and deletion of RMO1 in osteosarcoma. Int J Cancer 114:738–746PubMedGoogle Scholar
  40. Ermekova KS, Zambrano N, Linn H, Minopoli G, Gertler F, Russo T, Sudol M (1997) The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J Biol Chem 272:32869–32877PubMedGoogle Scholar
  41. Fedorov AA, Fedorov E, Gertler F, Almo SC (1999) Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat Struct Biol 6:661–665PubMedGoogle Scholar
  42. FitzGerald GA, Smith B, Pedersen AK, Brash AR (1984) Increased prostacyclin biosynthesis in patients with severe atherosclerosis and platelet activation. N Engl J Med 310:1065–1068PubMedGoogle Scholar
  43. Frischknecht F, Way M (2001) Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 11:30–38PubMedGoogle Scholar
  44. Frojmovic M, Longmire K, van de Ven TG (1990) Long-range interactions in mammalian platelet aggregation. II. The role of platelet pseudopod number and length. Biophys J 58:309–318PubMedGoogle Scholar
  45. Gambaryan S, Hauser W, Kobsar A, Glazova M, Walter U (2001) Distribution, cellular localization, and postnatal development of VASP and Mena expression in mouse tissues. Histochem Cell Biol 116:535–543PubMedGoogle Scholar
  46. Geiger B (1979) A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205PubMedGoogle Scholar
  47. Gertler FB, Bennett RL, Clark MJ, Hoffmann FM (1989) Drosophila abl tyrosine kinase in embryonic CNS axons: a role in axonogenesis is revealed through dosage-sensitive interactions with disabled. Cell 58:103–113PubMedGoogle Scholar
  48. Gertler FB, Doctor JS, Hoffmann FM (1990) Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science 248:857–860PubMedGoogle Scholar
  49. Gertler FB, Comer AR, Juang JL, Ahern SM, Clark MJ, Liebl EC, Hoffmann FM (1995) Enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev 9:521–533PubMedGoogle Scholar
  50. Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P (1996) Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87:227–239PubMedGoogle Scholar
  51. Gibbs CR, Blann AD, Watson RD, Lip GY (2001) Abnormalities of hemorheological, endothelial, and platelet function in patients with chronic heart failure in sinus rhythm: effects of angiotensin-converting enzyme inhibitor and beta-blocker therapy. Circulation 103:1746–1751PubMedGoogle Scholar
  52. Gkretsi V, Zhang Y, Tu Y, Chen K, Stolz DB, Yang Y, Watkins SC, Wu C (2005) Physical and functional association of migfilin with cell–cell adhesions. J Cell Sci 118:697–710PubMedGoogle Scholar
  53. Golemi-Kotra D, Mahaffy R, Footer MJ, Holtzman JH, Pollard TD, Theriot JA, Schepartz A (2004) High affinity, paralog-specific recognition of the Mena EVH1 domain by a miniature protein. J Am Chem Soc 126:4–5PubMedGoogle Scholar
  54. Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45PubMedGoogle Scholar
  55. Grevengoed EE, Loureiro JJ, Jesse TL, Peifer M (2001) Abelson kinase regulates epithelial morphogenesis in Drosophila. J Cell Biol 155:1185–1198PubMedGoogle Scholar
  56. Griffiths EK, Krawczyk C, Kong YY, Raab M, Hyduk SJ, Bouchard D, Chan VS, Kozieradzki I, Oliveira-Dos-Santos AJ, Wakeham A, Ohashi PS, Cybulsky MI, Rudd CE, Penninger JM (2001) Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293:2260–2263PubMedGoogle Scholar
  57. Gurbel PA, Kereiakes DJ, Dalesandro MR, Bahr RD, O’Connor CM, Serebruany VL (2000) Role of soluble and platelet-bound P-selectin in discriminating cardiac from noncardiac chest pain at presentation in the emergency department. Am Heart J 139:320–328PubMedGoogle Scholar
  58. Halbrugge M, Walter U (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 185:41–50PubMedGoogle Scholar
  59. Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265:3088–3093PubMedGoogle Scholar
  60. Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16:1796–1806PubMedGoogle Scholar
  61. Harbeck B, Huttelmaier S, Schluter K, Jockusch BM, Illenberger S (2000) Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 275:30817–30825PubMedGoogle Scholar
  62. Harmer NJ, Sivak JM, Amaya E, Blundell TL (2005) 1.15 A crystal structure of the X. tropicalis Spred1 EVH1 domain suggests a fourth distinct peptide-binding mechanism within the EVH1 family. FEBS Lett 579:1161–1166PubMedGoogle Scholar
  63. Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 96:8120–8125PubMedGoogle Scholar
  64. Hayot C, Debeir O, Van Ham P, Van Damme M, Kiss R, Decaestecker C (2006) Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicol Appl Pharmacol 211:30–40PubMedGoogle Scholar
  65. Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, Simoons ML (2003) Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 348:1104–1111PubMedGoogle Scholar
  66. Hohenstein B, Kasperek L, Kobelt DJ, Daniel C, Gambaryan S, Renne T, Walter U, Amann KU, Hugo CP (2005) Vasodilator-stimulated phosphoprotein-deficient mice demonstrate increased platelet activation but improved renal endothelial preservation and regeneration in passive nephrotoxic nephritis. J Am Soc Nephrol 16:986–996PubMedGoogle Scholar
  67. Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U (1994) Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem 225:21–27PubMedGoogle Scholar
  68. Howe AK, Hogan BP, Juliano RL (2002) Regulation of vasodilator-stimulated phosphoprotein phosphorylation and interaction with Abl by protein kinase A and cell adhesion. J Biol Chem 277:38121–38126PubMedGoogle Scholar
  69. Hunke C, Hirsch T, Eichler J (2006) Structure-based synthetic mimicry of discontinuous protein binding sites: inhibitors of the interaction of Mena EVH1 domain with proline-rich ligands. Chembiochem 7:1258–1264PubMedGoogle Scholar
  70. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9:61–67PubMedGoogle Scholar
  71. Huttelmaier S, Harbeck B, Steffens O, Messerschmidt T, Illenberger S, Jockusch BM (1999) Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett 451:68–74PubMedGoogle Scholar
  72. Ibarra-Alvarado C, Galle J, Melichar VO, Mameghani A, Schmidt HH (2002) Phosphorylation of blood vessel vasodilator-stimulated phosphoprotein at serine 239 as a functional biochemical marker of endothelial nitric oxide/cyclic GMP signaling. Mol Pharmacol 61:312–319PubMedGoogle Scholar
  73. Isenberg WM, Bainton DF, Newman PJ (1990) Monoclonal antibodies bound to subunits of the integrin GPIIb-IIIa are internalized and interfere with filopodia formation and platelet aggregation. Blood 76:1564–1571PubMedGoogle Scholar
  74. Jenzora A, Behrendt B, Small JV, Wehland J, Stradal TE (2005) PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Lett 579:455–463PubMedGoogle Scholar
  75. Jin RC, Voetsch B, Loscalzo J (2005) Endogenous mechanisms of inhibition of platelet function. Microcirculation 12:247–258PubMedGoogle Scholar
  76. Johnson RJ (1991) Platelets in inflammatory glomerular injury. Semin Nephrol 11:276–284PubMedGoogle Scholar
  77. Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116PubMedGoogle Scholar
  78. Kayisli UA, Demir R, Erguler G, Arici A (2002) Vasodilator-stimulated phosphoprotein expression and its cytokine-mediated regulation in vasculogenesis during human placental development. Mol Hum Reprod 8:1023–1030PubMedGoogle Scholar
  79. Keicher C, Gambaryan S, Schulze E, Marcus K, Meyer HE, Butt E (2004) Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase. Biochem Biophys Res Commun 324:308–316PubMedGoogle Scholar
  80. Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KT, Dill KA, Cohen FE, Zuckermann RN (1998) Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci USA 95:4303–4308PubMedGoogle Scholar
  81. Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J (2000) Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 149:181–194PubMedGoogle Scholar
  82. Krause M, Leslie JD, Stewart M, Lafuente EM, Valderrama F, Jagannathan R, Strasser GA, Rubinson DA, Liu H, Way M, Yaffe MB, Boussiotis VA, Gertler FB (2004) Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 7:571–583PubMedGoogle Scholar
  83. Kuhnel K, Jarchau T, Wolf E, Schlichting I, Walter U, Wittinghofer A, Strelkov SV (2004) The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proc Natl Acad Sci USA 101:17027–17032PubMedGoogle Scholar
  84. Lafuente EM, van Puijenbroek AA, Krause M, Carman CV, Freeman GJ, Berezovskaya A, Constantine E, Springer TA, Gertler FB, Boussiotis VA (2004) RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell 7:585–595PubMedGoogle Scholar
  85. Lambrechts A, Verschelde JL, Jonckheere V, Goethals M, Vandekerckhove J, Ampe C (1997) The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. Embo J 16:484–494PubMedGoogle Scholar
  86. Lambrechts A, Kwiatkowski AV, Lanier LM, Bear JE, Vandekerckhove J, Ampe C, Gertler FB (2000) cAMP-dependent protein kinase phosphorylation of EVL, a Mena/VASP relative, regulates its interaction with actin and SH3 domains. J Biol Chem 275:36143–36151PubMedGoogle Scholar
  87. Lambrechts A, Van Troys M, Ampe C (2004) The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 36:1890–1909PubMedGoogle Scholar
  88. Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, Kwiatkowski D, Soriano P, Gertler FB (1999) Mena is required for neurulation and commissure formation. Neuron 22:313–325PubMedGoogle Scholar
  89. Laurent V, Loisel TP, Harbeck B, Wehman A, Grobe L, Jockusch BM, Wehland J, Gertler FB, Carlier MF (1999) Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J Cell Biol 144:1245–1258PubMedGoogle Scholar
  90. Lawrence DW, Pryzwansky KB (2001) The vasodilator-stimulated phosphoprotein is regulated by cyclic GMP-dependent protein kinase during neutrophil spreading. J Immunol 166:5550–5556PubMedGoogle Scholar
  91. Lawrence DW, Comerford KM, Colgan SP (2002) Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch. Am J Physiol Cell Physiol 282:C1235–C1245PubMedGoogle Scholar
  92. Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49PubMedGoogle Scholar
  93. Li Z, Ajdic J, Eigenthaler M, Du X (2003) A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood 101:4423–4429PubMedGoogle Scholar
  94. Lindberg RA, Slaaf DW, Lentsch AB, Miller FN (1994) Involvement of nitric oxide and cyclooxygenase products in photoactivation-induced microvascular occlusion. Microvasc Res 47:203–221PubMedGoogle Scholar
  95. Liu K, Li L, Nisson PE, Gruber C, Jessee J, Cohen SN (1999) Reversible tumorigenesis induced by deficiency of vasodilator-stimulated phosphoprotein. Mol Cell Biol 19:3696–3703PubMedGoogle Scholar
  96. Loureiro JJ, Rubinson DA, Bear JE, Baltus GA, Kwiatkowski AV, Gertler FB (2002) Critical roles of phosphorylation and actin binding motifs, but not the central proline-rich region, for Ena/vasodilator-stimulated phosphoprotein (VASP) function during cell migration. Mol Biol Cell 13:2533–2546PubMedGoogle Scholar
  97. Machesky LM, Hall A (1997) Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol 138:913–926PubMedGoogle Scholar
  98. Mao X, Kashii T, Hayashi R, Sassa K, Fujishita T, Maruyama M, Kobayashi M, Liu S (2000) Cloning of differentially expressed sequence tags from nickel-transformed human embryonic lung cells. Cancer Lett 161:57–62PubMedGoogle Scholar
  99. Markert T, Krenn V, Leebmann J, Walter U (1996) High expression of the focal adhesion- and microfilament-associated protein VASP in vascular smooth muscle and endothelial cells of the intact human vessel wall. Basic Res Cardiol 91:337–343PubMedGoogle Scholar
  100. Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fassler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′, 5′-monophosphate kinase I. J Exp Med 189:1255–1264PubMedGoogle Scholar
  101. Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896PubMedGoogle Scholar
  102. Massberg S, Gruner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, Muller I, Besta F, Nieswandt B, Heinzmann U, Walter U, Gawaz M (2004) Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142PubMedGoogle Scholar
  103. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG (2004) Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118:363–373PubMedGoogle Scholar
  104. Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar HSA, Schmidt HH (2004) Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci USA 101:16671–16676PubMedGoogle Scholar
  105. Menzies AS, Aszodi A, Williams SE, Pfeifer A, Wehman AM, Goh KL, Mason CA, Fassler R, Gertler FB (2004) Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J Neurosci 24:8029–8038PubMedGoogle Scholar
  106. Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W, Holzman LB (2004) Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 23:3769–3779PubMedGoogle Scholar
  107. Monks D, Lange V, Silber RE, Markert T, Walter U, Nehls V (1998) Expression of cGMP-dependent protein kinase I and its substrate VASP in neointimal cells of the injured rat carotid artery. Eur J Clin Invest 28:416–423PubMedGoogle Scholar
  108. Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T (1997) A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16:5433–5444PubMedGoogle Scholar
  109. Niedergang F, Chavrier P (2004) Signaling and membrane dynamics during phagocytosis: many roads lead to the phagos(R)ome. Curr Opin Cell Biol 16:422–428PubMedGoogle Scholar
  110. Nimpf J, Wurm H, Kostner GM, Kenner T (1986) Platelet activation in normo- and hyperlipoproteinemias. Basic Res Cardiol 81:437–453PubMedGoogle Scholar
  111. Nolte C, Eigenthaler M, Schanzenbacher P, Walter U (1991a) Comparison of vasodilatory prostaglandins with respect to cAMP-mediated phosphorylation of a target substrate in intact human platelets. Biochem Pharmacol 42:253–262PubMedGoogle Scholar
  112. Nolte C, Eigenthaler M, Schanzenbacher P, Walter U (1991b) Endothelial cell-dependent phosphorylation of a platelet protein mediated by cAMP- and cGMP-elevating factors. J Biol Chem 266:14808–14812PubMedGoogle Scholar
  113. Parangi S, O’Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D (1996) Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 93:2002–2007PubMedGoogle Scholar
  114. Pawlak G, Helfman DM (2001) Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 11:41–47PubMedGoogle Scholar
  115. Peterson EJ, Woods ML, Dmowski SA, Derimanov G, Jordan MS, Wu JN, Myung PS, Liu QH, Pribila JT, Freedman BD, Shimizu Y, Koretzky GA (2001) Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293:2263–2265PubMedGoogle Scholar
  116. Peterson FC, Deng Q, Zettl M, Prehoda KE, Lim WA, Way M, Volkman BF (2007) Multiple WIP recognition motifs are required for a functional interaction with N-WASP. J Biol Chem 282(11):8446–8453PubMedGoogle Scholar
  117. Prehoda KE, Lee DJ, Lim WA (1999) Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97:471–480PubMedGoogle Scholar
  118. Price CJ, Brindle NP (2000) Vasodilator-stimulated phosphoprotein is involved in stress-fiber and membrane ruffle formation in endothelial cells. Arterioscler Thromb Vasc Biol 20:2051–2056PubMedGoogle Scholar
  119. Pula G, Schuh K, Nakayama K, Nakayama KI, Walter U, Poole AW (2006) PKCδ regulates collagen-induced platelet aggregation through inhibition of VASP-mediated filopodia formation. Blood 108:4035–4044PubMedGoogle Scholar
  120. Quinlan MP (2004) Suppression of epithelial cell transformation and induction of actin dependent differentiation by dominant negative Rac1, but not Ras, Rho or Cdc42. Cancer Biol Ther 3:65–70PubMedGoogle Scholar
  121. Rao J, Li N (2004) Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets 4:345–354PubMedGoogle Scholar
  122. Reinhard M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U (1995) The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. Embo J 14:1583–1589PubMedGoogle Scholar
  123. Reinhard M, Rudiger M, Jockusch BM, Walter U (1996) VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs. FEBS Lett 399:103–107PubMedGoogle Scholar
  124. Riba R, Oberprieler NG, Roberts W, Naseem KM (2006) Von Willebrand factor activates endothelial nitric oxide synthase in blood platelets by a glycoprotein Ib-dependent mechanism. J Thromb Haemost 4:2636–2644PubMedGoogle Scholar
  125. Rodriguez-Viciana P, Sabatier C, McCormick F (2004) Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol Cell Biol 24:4943–4954PubMedGoogle Scholar
  126. Rotter B, Bournier O, Nicolas G, Dhermy D, Lecomte MC (2005) AlphaII-spectrin interacts with Tes and EVL, two actin-binding proteins located at cell contacts. Biochem J 388:631–638PubMedGoogle Scholar
  127. Salazar R, Bell SE, Davis GE (1999) Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp Cell Res 249:22–32PubMedGoogle Scholar
  128. Salazar MA, Kwiatkowski AV, Pellegrini L, Cestra G, Butler MH, Rossman KL, Serna DM, Sondek J, Gertler FB, De Camilli P (2003) Tuba: A novel protein containing Bin/Amphiphysin/Rvs (BAR) and Dbl homology domains links dynamin to regulation of the actin cytoskeleton. J Biol Chem 278:49031–49043PubMedGoogle Scholar
  129. Schafer A, Burkhardt M, Vollkommer T, Bauersachs J, Munzel T, Walter U, Smolenski A (2003) Endothelium-dependent and -independent relaxation and VASP serines 157/239 phosphorylation by cyclic nucleotide-elevating vasodilators in rat aorta. Biochem Pharmacol 65:397–405PubMedGoogle Scholar
  130. Schafer A, Widder J, Eigenthaler M, Ertl G, Bauersachs J (2004) Reduced basal nitric oxide bioavailability and platelet activation in young spontaneously hypertensive rats. Biochem Pharmacol 67:2273–2279PubMedGoogle Scholar
  131. Schafer A, Fraccarollo D, Eigenthaler M, Tas P, Firnschild A, Frantz S, Ertl G, Bauersachs J (2005) Rosuvastatin reduces platelet activation in heart failure: role of NO bioavailability. Arterioscler Thromb Vasc Biol 25:1071–1077PubMedGoogle Scholar
  132. Schafer A, Flierl U, Kobsar A, Eigenthaler M, Ertl G, Bauersachs J (2006) Soluble guanylyl cyclase activation with HMR1766 attenuates platelet activation in diabetic rats. Arterioscler Thromb Vasc Biol 26:2813–2818PubMedGoogle Scholar
  133. Schwarz UR, Geiger J, Walter U, Eigenthaler M (1999) Flow cytometry analysis of intracellular VASP phosphorylation for the assessment of activating and inhibitory signal transduction pathways in human platelets–definition and detection of ticlopidine/clopidogrel effects. Thromb Haemost 82:1145–1152PubMedGoogle Scholar
  134. Scott JA, Shewan AM, den Elzen NR, Loureiro JJ, Gertler FB, Yap AS (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell 17:1085–1095PubMedGoogle Scholar
  135. Shattil SJ, Kashiwagi H, Pampori N (1998) Integrin signaling: the platelet paradigm. Blood 91:2645–2657PubMedGoogle Scholar
  136. Sinnaeve P, Chiche JD, Gillijns H, Van Pelt N, Wirthlin D, Van De Werf F, Collen D, Bloch KD, Janssens S (2002) Overexpression of a constitutively active protein kinase G mutant reduces neointima formation and in-stent restenosis. Circulation 105:2911–2916PubMedGoogle Scholar
  137. Smith GA, Theriot JA, Portnoy DA (1996) The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol 135:647–660PubMedGoogle Scholar
  138. Smolenski A, Bachmann C, Reinhard K, Honig-Liedl P, Jarchau T, Hoschuetzky H, Walter U (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 273:20029–20035PubMedGoogle Scholar
  139. Smolenski A, Poller W, Walter U, Lohmann SM (2000) Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I. J Biol Chem 275:25723–25732PubMedGoogle Scholar
  140. Sporbert A, Mertsch K, Smolenski A, Haseloff RF, Schonfelder G, Paul M, Ruth P, Walter U, Blasig IE (1999) Phosphorylation of vasodilator-stimulated phosphoprotein: a consequence of nitric oxide- and cGMP-mediated signal transduction in brain capillary endothelial cells and astrocytes. Brain Res Mol Brain Res 67:258–266PubMedGoogle Scholar
  141. Sudo T, Ito H, Kimura Y (2003) Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets. Platelets 14:381–390PubMedGoogle Scholar
  142. Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, Shishido T (2003) Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (Mena) by c-Abl kinase. J Biol Chem 278:21685–21692PubMedGoogle Scholar
  143. Tanoue T, Takeichi M (2004) Mammalian Fat1 cadherin regulates actin dynamics and cell–cell contact. J Cell Biol 165:517–528PubMedGoogle Scholar
  144. Tschoepe D, Roesen P, Schwippert B, Gries FA (1993) Platelets in diabetes: the role in the hemostatic regulation in atherosclerosis. Semin Thromb Hemost 19:122–128PubMedGoogle Scholar
  145. Tseng SY, Dustin ML (2002) T-cell activation: a multidimensional signaling network. Curr Opin Cell Biol 14:575–580PubMedGoogle Scholar
  146. van der Ven PF, Ehler E, Vakeel P, Eulitz S, Schenk JA, Milting H, Micheel B, Furst DO (2006) Unusual splicing events result in distinct Xin isoforms that associate differentially with filamin c and Mena/VASP. Exp Cell Res 312:2154–2167PubMedGoogle Scholar
  147. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell 100:209–219PubMedGoogle Scholar
  148. Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich syndrome. Cell 111:565–576PubMedGoogle Scholar
  149. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412:647–651PubMedGoogle Scholar
  150. Walders-Harbeck B, Khaitlina SY, Hinssen H, Jockusch BM, Illenberger S (2002) The vasodilator-stimulated phosphoprotein promotes actin polymerisation through direct binding to monomeric actin. FEBS Lett 529:275–280PubMedGoogle Scholar
  151. Wang Y, Lin H, Tullman R, Jewell CF, Jr, Weetall ML, Tse FL (1999) Absorption and disposition of a tripeptoid and a tetrapeptide in the rat. Biopharm Drug Dispos 20:69–75PubMedGoogle Scholar
  152. Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8594PubMedGoogle Scholar
  153. Warnholtz A, Ostad MA, Velich N, Trautmann C, Schinzel R, Walter U, Munzel T (2007) A single loading dose of clopidogrel causes dose-dependent improvement of endothelial dysfunction in patients with stable coronary artery disease: results of a double-blind, randomized study. Atherosclerosis 196(2):689–695PubMedGoogle Scholar
  154. Wentworth JKT, Pula G, Poole AW (2006) Vasodilator-stimulated phosporprotein (VASP) is phosphorylated on SER157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochem J 393:555–564PubMedGoogle Scholar
  155. Winocour PD (1992) Platelet abnormalities in diabetes mellitus. Diabetes 92:26–31Google Scholar
  156. Wu C (2005) Migfilin and its binding partners: from cell biology to human diseases. J Cell Sci 118:659–64PubMedGoogle Scholar
  157. Zettl M, Way M (2002) The WH1 and EVH1 domains of WASP and Ena/VASP family members bind distinct sequence motifs. Curr Biol 12:1617–1622PubMedGoogle Scholar
  158. Zhang Y, Tu Y, Gkretsi V, Wu C (2006) Migfilin interacts with vasodilator-stimulated phosphoprotein (VASP) and regulates VASP localization to cell-matrix adhesions and migration. J Biol Chem 281:12397–12407PubMedGoogle Scholar
  159. Zimmermann J, Labudde D, Jarchau T, Walter U, Oschkinat H, Ball LJ (2002) Relaxation, equilibrium oligomerization, and molecular symmetry of the VASP (336–380) EVH2 tetramer. Biochemistry 41:11143–11151PubMedGoogle Scholar
  160. Zimmermann J, Kuhne R, Volkmer-Engert R, Jarchau T, Walter U, Oschkinat H, Ball LJ (2003) Design of N-substituted peptomer ligands for EVH1 domains. J Biol Chem 278:36810–368PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • G. Pula
    • 1
  • M. Krause
    • 1
  1. 1.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations