A Variational Approach for 3D Motion Estimation of Incompressible PIV Flows

  • Luis Alvarez
  • Carlos Castaño
  • Miguel García
  • Karl Krissian
  • Luis Mazorra
  • Agustín Salgado
  • Javier Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4485)

Abstract

Estimation of motion has many applications in fluid analysis. Lots of work has been carried out using Particle Image Velocimetry to design experiments which capture and measure the flow motion using 2D images. Recent technological advances allow capturing 3D PIV image sequences of moving particles. In this context, we propose a new three-dimensional variational (energy-based) technique. Our technique is based on solenoidal projection to take into account the incompressibility of the real flow. It uses the result of standard flow motion estimation techniques like iterative cross-correlation or pyramidal optical flow as an initialization, and improves significantly their accuracies. The performance of the proposed technique is measured and illustrated using numerical simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry. A Practical Guide. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Hinsch, K.D.: Three-dimensional particle velocimetry. Meas. Sci. Tech. 6, 742–753 (1995)CrossRefGoogle Scholar
  3. 3.
    Royer, H., Stanislas, M.: Stereoscopic and holographic approaches to get the third velocity component in piv. Von Karman Institute for Fluid Dynamics, Lecture Series, vol. 3 (1996)Google Scholar
  4. 4.
    Scarano, F.: Iterative image deformation methods in piv. Measc. Sci. Technol. 13, 1 (2002)CrossRefGoogle Scholar
  5. 5.
    Corpetti, T., et al.: Fluid experimental flow estimation based on an optical-flow scheme. Experiments in Fluids 40(1), 80–97 (2006)CrossRefGoogle Scholar
  6. 6.
    Horn, B., Schunck, B.: Determining optical flow. MIT Aritificial Intelligence Laboratory (April 1980)Google Scholar
  7. 7.
    Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computing Surveys 27(3), 433–467 (1995), http://citeseer.ist.psu.edu/beauchemin95computation.html CrossRefGoogle Scholar
  8. 8.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  9. 9.
    White, F.: Viscous Fluid Flow. McGraw-Hill, New York (2006)Google Scholar
  10. 10.
    Parnaudeau, P., et al.: Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900. Physics of Fluids (submitted) (2006)Google Scholar
  11. 11.
    Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. International Journal of Computer Vision 45(3), 245–264 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Yuan, J., et al.: Discrete orthogonal decomposition and variational fluid flow estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Luis Alvarez
    • 1
  • Carlos Castaño
    • 1
  • Miguel García
    • 1
  • Karl Krissian
    • 1
  • Luis Mazorra
    • 1
  • Agustín Salgado
    • 1
  • Javier Sánchez
    • 1
  1. 1.Departamento de Informatica y Sistemas, Universidad de Las Palmas de Gran CanariaSpain

Personalised recommendations