Identification of Grain Boundary Contours at Atomic Scale

  • Benjamin Berkels
  • Andreas Rätz
  • Martin Rumpf
  • Axel Voigt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4485)

Abstract

Nowadays image acquisition in materials science allows the resolution of grains at atomic scale. Grains are material regions with different lattice orientation which are typically not in equilibrium. At the same time, new microscopic simulation tools allow to study the dynamics of such grain structures. Single atoms are resolved in the experimental and in the simulation results. A qualitative study of experimental images and simulation results and the comparison of simulation and experiment requires the robust and reliable extraction of mesoscopic properties from these microscopic data sets. Based on a Mumford–Shah type functional, grain boundaries are described as free discontinuity sets at which the orientation parameter for the lattice jumps. The lattice structure itself is encoded in a suitable integrand depending on the local lattice orientation. In addition the approach incorporates solid–liquid interfaces. The resulting Mumford–Shah functional is approximated with a level set active contour model following the approach by Chan and Vese. The implementation is based on a finite element discretization in space and a step size controlled gradient descent algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aujol, A., Chambolle, J.-F.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aujol, J.-F., Aubert, G., Blanc-Feáaud, L.: Wavelet-based level set evolution for classification of textured images. IEEE Transactions on Image Processing 12(12), 1634–1641 (2003)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aujol, J.-F., Chan, T.F.: Combining geometrical and textured information to perform image classification. Journal of Visual Communication and Image Representation 17(5), 1004–1023 (2006)CrossRefGoogle Scholar
  4. 4.
    Berthod, M., et al.: Bayesian image classification using markov random fields. Image and Vision Computing 14(4), 285–295 (1996)CrossRefGoogle Scholar
  5. 5.
    Bouman, C., Shapiro, M.: Multiscale random field model for bayesian image segmentation. IEEE Transactions on Image Processing 3(2), 162–177 (1994)CrossRefGoogle Scholar
  6. 6.
    Caselles, V., et al.: A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Cremers, D., Schnörr, C.: Statistical shape knowledge in variational motion segmentation. Image and Vision Computing 21(1), 77–86 (2003)CrossRefGoogle Scholar
  9. 9.
    Doretto, G., et al.: Dynamic texture segmentation. In: Triggs, B., Zisserman, A. (eds.) IEEE International Conference on Computer Vision (ICCV), vol. 2, Oct. 2003, pp. 1236–1242 (2003)Google Scholar
  10. 10.
    Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 70(5), 051605–1–051605–18 (2004)Google Scholar
  11. 11.
    Heiler, M., Schnörr, C.: Natural image statistics for natural image segmentation. Int. J. Computer Vision 63(1), 5–19 (2005)CrossRefGoogle Scholar
  12. 12.
    King, W.E., et al.: Quantitative HREM observation of the \({\Sigma}11(113)/[\bar{1}00]\) grain-boundary structure in aluminium and comparison with atomistic simulation. Journal of Microscopy 190(1-2), 131–143 (1998)CrossRefGoogle Scholar
  13. 13.
    Kosmol, P.: Optimierung und Approximation. de Gruyter Lehrbuch. Walter de Gruyter, Berlin (1991)MATHGoogle Scholar
  14. 14.
    Lakshmanan, S., Derin, H.: Simultaneous parameter estimation and segmentation of gibbs random fields using simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(8), 799–813 (1989)CrossRefGoogle Scholar
  15. 15.
    Manjunath, B.S., Chellappa, R.: Unsupervised texture segmentation using markov random field models. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 478–482 (1991)CrossRefGoogle Scholar
  16. 16.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, Boston (2001)MATHGoogle Scholar
  17. 17.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Paragios, N.K., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding 97(3), 259–282 (2005)CrossRefGoogle Scholar
  20. 20.
    Rätz, A., Voigt, A.: An unconditionally stable finite element discretization of the phase-field-crystal model. In preparation (2006)Google Scholar
  21. 21.
    Sandberg, B., Chan, T., Vese, L.: A level-set and gabor-based active contour algorithm for segmenting textured images. Technical Report 02-39, UCLA CAM Reports (2002)Google Scholar
  22. 22.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  23. 23.
    Singh, Y.: Density-functional theory of freezing and properties of the ordered phase. Physics Reports 207(6), 351–444 (1991)CrossRefGoogle Scholar
  24. 24.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 4(11), 1549–1560 (1995)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Vese, L., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50(3), 271–293 (2002)MATHCrossRefGoogle Scholar
  26. 26.
    Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. Journal of Scientific Computing 19(1-3), 553–572 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Benjamin Berkels
    • 1
  • Andreas Rätz
    • 2
  • Martin Rumpf
    • 1
  • Axel Voigt
    • 2
    • 3
  1. 1.Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 15, 53115 BonnGermany
  2. 2.Crystal Growth Group, Research Center caesar, Ludwig-Erhard-Allee 2, 53175 BonnGermany
  3. 3.Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 DresdenGermany

Personalised recommendations