Advertisement

Component Connectors with QoS Guarantees

  • Farhad Arbab
  • Tom Chothia
  • Sun Meng
  • Young-Joo Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4467)

Abstract

Connectors have emerged as a powerful concept for composition and coordination of concurrent activities encapsulated as components and services. Compositional coordination models and languages serve as a means to formally specify and implement component and service connectors. They support large-scale distributed applications by allowing construction of complex component connectors out of simpler ones. Modelling, analysis, and ensuring end-to-end Quality of Service (QoS) represent key concerns in such large-scale distributed applications. In this paper we introduce a compositional model of QoS, called Quantitative Constraint Automata, that reflects the underlying architecture of component/service composition represented by the Reo connector circuits. These can support compositional reasoning about component/service connectors, modelled as Reo circuits with QoS properties.

Keywords

Coordination Composition Reo Quality of Service  Quantitative Constraint Automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Abstract Behavior Types: A Foundation Model for Components and Their Composition. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 33–70. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and Temporal Logics for Timed Component Connectors. In: Cuellar, J.R., Liu, Z. (eds.) SEFM2004. 2nd International Conference on Software Engineering and Formal Methods, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  4. 4.
    Arbab, F., Rutten, J.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) Recent Trends in Algebraic Development Techniques. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Baier, C.: Probabilistic Models for Reo Connector Circuits. Journal of Universal Computer Science 11(10), 1718–1748 (2005)Google Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Science of Computer Programming 61, 75–113 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baier, C., Wolf, V.: Stochastic Reasoning About Channel-Based Component Connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. JACM 44(2), 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chothia, T., Kleijn, J.: Q-Automata: Modelling the Resource Usage of Concurrent Components. In: Proceedings of FOCLASA 2006. ENTCS, Elsevier, Amsterdam (2006)Google Scholar
  11. 11.
    Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system design: the integration of functional specification and performance analysis using stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993. LNCS, vol. 729, pp. 121–146. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  14. 14.
    Papazoglou, M.P., Georgakopoulos, D.: Service Oriented Computing. Comm. ACM 46(10), 25–28 (2003)Google Scholar
  15. 15.
    Marsan, M.A., Conte, G., Balbo, G.: A Class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems. ACM Transactions on Computer Systems 2(2), 93–122 (1984)CrossRefGoogle Scholar
  16. 16.
    Menascé, D.A.: Composing Web Services: A QoS View. IEEE Internet Computing 8(6), 88–90 (2004)CrossRefGoogle Scholar
  17. 17.
    Meng, S., Arbab, F.: Web Services Choreography and Orchestration in Reo and Constraint Automata. In: Proceedings of SAC’07 (2007)Google Scholar
  18. 18.
    Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.) Proceedings of the 2nd International Joint Conference on Artifiial Intelligence, London, UK, British Computer Society, William Kaufmann (1971)Google Scholar
  19. 19.
    Mohri, M., Pereira, F., Riley, M.: Weighted automata in text and speech processing. In: ECAI’96. Workshop on Extended Finite State Models of Language, pp. 46–50 (1996)Google Scholar
  20. 20.
    De Nicola, R., Ferrari, G., Montanari, U., Pugliese, R., Tuosto, E.: A process calculus for qos-aware applications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 33–48. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Farhad Arbab
    • 1
  • Tom Chothia
    • 1
  • Sun Meng
    • 1
  • Young-Joo Moon
    • 1
  1. 1.CWI, Kruislaan 413, AmsterdamThe Netherlands

Personalised recommendations