Orbitopal Fixing

  • Volker Kaibel
  • Matthias Peinhardt
  • Marc E. Pfetsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4513)


The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the order of the subsets of the partition is irrelevant. This kind of symmetry unnecessarily blows up the branch-and-cut tree.

We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving such symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the branch-and-cut tree, removes redundant parts of the tree produced by the above mentioned symmetry. The method relies on certain polyhedra, called orbitopes, which have been investigated in [11]. It does, however, not add inequalities to the model, and thus, it does not increase the difficulty of solving the linear programming relaxations. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem motivated from frequency planning in mobile telecommunication networks.


Linear Time Algorithm Integer Programming Model Linear Description Frequency Assignment Problem Clique Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achterberg, T.: SCIP – A framework to integrate constraint and mixed integer programming. Report 04-19, Zuse Institute Berlin (2004),
  2. 2.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1), 87–115 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chopra, S., Rao, M.R.: Facets of the k-partition polytope. Discrete Appl. Math. 61(1), 27–48 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Eisenblätter, A.: Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds. PhD thesis, TU Berlin (2001)Google Scholar
  6. 6.
    Falkner, J., Rendl, F., Wolkowicz, H.: A computational study of graph partitioning. Math. Program. 66(2), 211–239 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Ferreira, C., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: Formulations and valid inequalities of the node capacitated graph partitioning problem. Math. Program. 74, 247–266 (1996)Google Scholar
  8. 8.
    Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: A computational study. Math. Program. 81(2), 229–256 (1998)CrossRefGoogle Scholar
  9. 9.
    Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Prog. 45(1), 59–96 (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Prog. 47(3), 367–387 (1990)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kaibel, V., Pfetsch, M.E.: Packing and partitioning orbitopes, Math. Program., In press (2007)Google Scholar
  12. 12.
    Kochenberger, G., Glover, F., Alidaee, B., Wang, H.: Clustering of microarray data via clique partitioning. J. Comb. Optim. 10(1), 77–92 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Ostrowski, J.P., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 104–118. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1), 71–90 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1–3), 3–21 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Margot, F.: Small covering designs by branch-and-cut. Math. Program. 94(2–3), 207–220 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Margot, F.: Symmetric ILP: Coloring and small integers. Discrete Opt. 4(1), 40–62 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Mehrotra, A., Trick, M.A.: Cliques and clustering: A combinatorial approach. Oper. Res. Lett. 22(1), 1–12 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Sørensen, M.M.: Polyhedral computations for the simple graph partitioning problem. Working paper L-2005-02, Århus School of Business (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Volker Kaibel
    • 1
  • Matthias Peinhardt
    • 1
  • Marc E. Pfetsch
    • 2
  1. 1.Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik, Universitätsplatz 2, 39106 MagdeburgGermany
  2. 2.Zuse Institute Berlin, Takustr. 7, 14195 BerlinGermany

Personalised recommendations