The Smoothed Number of Pareto Optimal Solutions in Bicriteria Integer Optimization

  • Rene Beier
  • Heiko Röglin
  • Berthold Vöcking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4513)

Abstract

A well established heuristic approach for solving various bicriteria optimization problems is to enumerate the set of Pareto optimal solutions, typically using some kind of dynamic programming approach. The heuristics following this principle are often successful in practice. Their running time, however, depends on the number of enumerated solutions, which can be exponential in the worst case.

In this paper, we prove an almost tight bound on the expected number of Pareto optimal solutions for general bicriteria integer optimization problems in the framework of smoothed analysis. Our analysis is based on a semi-random input model in which an adversary can specify an input which is subsequently slightly perturbed at random, e. g., using a Gaussian or uniform distribution.

Our results directly imply tight polynomial bounds on the expected running time of the Nemhauser/Ullmann heuristic for the 0/1 knapsack problem. Furthermore, we can significantly improve the known results on the running time of heuristics for the bounded knapsack problem and for the bicriteria shortest path problem. Finally, our results also enable us to improve and simplify the previously known analysis of the smoothed complexity of integer programming.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beier, R.: Probabilistic Analysis of Discrete Optimization Problems. PhD thesis, Universität des Saarlandes (2004)Google Scholar
  2. 2.
    Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of Computer and System Sciences 69(3), 306–329 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete optimization. SIAM Journal on Computing 35(4), 855–881 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corley, H.W., Moon, I.D.: Shortest paths in networks with vector weights. Journal of Optimization Theory and Application 46(1), 79–86 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ehrgott, M.: Integer solutions of multicriteria network flow problems. Investigacao Operacional 19, 61–73 (1999)Google Scholar
  6. 6.
    Ehrgott, M., Gandibleux, X.: Multiobjective Combinatorial Optimization. In: Multiple Criteria Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 491, Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)MATHGoogle Scholar
  8. 8.
    Klamroth, K., Wiecek, M.M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 47(1), 57–76 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Müller-Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE 2001. LNCS, vol. 2141, pp. 185–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Mustafa, A., Goh, M.: Finding integer efficient solutions for bicriteria and tricriteria network flow problems using dinas. Computers & OR 25(2), 139–157 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nemhauser, G.L., Ullmann, Z.: Discrete dynamic programming and capital allocation. Management Science 15, 494–505 (1969)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS), pp. 86–92. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  13. 13.
    Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 276–290. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Skriver, A.J.V., Andersen, K.A.: A label correcting approach for solving bicriterion shortest-path problems. Computers & OR 27(6), 507–524 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Vassilvitskii, S., Yannakakis, M.: Efficiently computing succinct trade-off curves. Theoretical Computer Science 348(2-3), 334–356 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Rene Beier
    • 1
  • Heiko Röglin
    • 2
  • Berthold Vöcking
    • 2
  1. 1.Max-Planck-Institut für Informatik, SaarbrückenGermany
  2. 2.Department of Computer Science, RWTH Aachen, D-52056 AachenGermany

Personalised recommendations