Triangle-Free Simple 2-Matchings in Subcubic Graphs (Extended Abstract)

  • David Hartvigsen
  • Yanjun Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4513)

Abstract

A simple 2-matching in an edge-weighted graph is a subgraph all of whose vertices have degree 1 or 2. We consider the problem of finding a maximum weight simple 2-matching that contains no triangles, which is closely related to a class of relaxations of the TSP. Our main results are, for graphs with maximum degree 3, a complete description of the convex hull of incidence vectors of triangle-free simple 2-matchings and a strongly polynomial time algorithm for the above problem. Our system requires the use of a type of comb inequality (introduced by Grötschel and Padberg for the TSP polytope) that has {0,1,2}-coefficients and hence is more general than the well-known blossom inequality used in Edmonds’ characterization of the simple 2-matching polytope.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berge, C.: Sur le couplate maximum d’un graphe. Comptes Rendus Hebdomadaires des Séances de l’Académie Sciences [Paris] 247, 258–259 (1958)MathSciNetMATHGoogle Scholar
  2. 2.
    Bertram, E., Horak, P.: Decomposing 4-regular graphs into triangle-free 2-factors. SIAM J. Disc. Math. 10, 309–317 (1997)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Boyd, S.C., Cunningham, W.: Small travelling salesman polytopes. Math. Oper. Res. 16, 259–271 (1991)MathSciNetMATHGoogle Scholar
  4. 4.
    Chvátal, V.: Edmonds polytopes and weakly hamiltonian graphs. Math. Prog. 5, 29–40 (1973)CrossRefMATHGoogle Scholar
  5. 5.
    Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. John Wiley & Sons, New York (1998)MATHGoogle Scholar
  6. 6.
    Cornuéjols, G., Naddef, D., Pulleyblank, W.R.: The traveling salesman problem in graphs with 3-edge cutsets. J.A.C.M. 32, 383–410 (1985)MATHGoogle Scholar
  7. 7.
    Cornuéjols, G., Pulleyblank, W.R.: A matching problem with side constraints. Disc. Math. 29, 135–159 (1980)CrossRefMATHGoogle Scholar
  8. 8.
    Cunningham, W.H., Wang, Y.: Restricted 2-factor polytopes. Math. Prog. 87, 87–111 (2000)MathSciNetMATHGoogle Scholar
  9. 9.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)MathSciNetMATHGoogle Scholar
  10. 10.
    Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. J. of Res. National Bur. of Standards 69, 125–130 (1965)MathSciNetMATHGoogle Scholar
  11. 11.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for finding a maximum weight Hamiltonian circuit. Oper. Res. 27, 799–809 (1979)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bideredted network flow problems. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 448–456. The Association for Computing Machinery, New York (1983)CrossRefGoogle Scholar
  13. 13.
    Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem II: Lifting theorems and facets. Math. Prog. 16, 282–302 (1979)Google Scholar
  14. 14.
    Hartvigsen, D.: Extensions of Matching Theory. Ph.D. Thesis (under the supervision of Cornuéjols, G.), Carnegie-Mellon University (1984)Google Scholar
  15. 15.
    Hartvigsen, D.: Finding maximum square-free 2-matchings in bipartite graphs. J. of Comb. Th. B 96, 693–705 (2006)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Hell, P., Kirkpatrick, D., Kratochvíl, J., Kŕíź, I.: On restricted 2-factors. SIAM J. Disc. Math 1, 472–484 (1988)CrossRefMATHGoogle Scholar
  17. 17.
    Holton, D., Aldred, R.E.L.: Planar graphs, regular graphs, bipartite graphs and Hamiltonicity. Australas. J. Combin. 20, 111–131 (1999)MathSciNetMATHGoogle Scholar
  18. 18.
    Holyer, I.: The NP-completeness of edge coloring. SIAM Journal on Computing 10, 718–720 (1981)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Johnson, E.: Network Flows, Graphs and Integer Programming. Ph.D. Thesis, University of California, Berkeley (1965)Google Scholar
  20. 20.
    Kaiser, T., Skrekovski, R.: Cycles intersecting cuts of prescribed sizes. Manuscript (2005)Google Scholar
  21. 21.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem – A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1985)MATHGoogle Scholar
  22. 22.
    Nam, Y.: Matching Theory: Subgraphs with Degree Constraints and other Properties. Ph.D. Thesis (Under the supervision of Anstee, R.), University of British Columbia (1994)Google Scholar
  23. 23.
    Petersen, J.: Die Theorie der regulären graphs. Acta Mathematica 15, 193–220 (1891)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Petersen, J.: Sur le theoreme de Tait. L’Intermediaire des Mathematiciens 5, 225–227 (1898)Google Scholar
  25. 25.
    Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)MATHGoogle Scholar
  26. 26.
    Tait, P.G.: Remarks on the previous communication. Proceedings of the Royal Society of Edinburgh 10, 729 (1878-80)Google Scholar
  27. 27.
    Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22, 107–111 (1947)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canadian J. of Math. 6, 347–352 (1954)MathSciNetMATHGoogle Scholar
  29. 29.
    Vornberger, O.: Easy and hard cycle covers. Manuscript, Universität Paderborn (1980)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David Hartvigsen
    • 1
  • Yanjun Li
    • 2
  1. 1.Mendoza College of Business, University of Notre Dame, Notre Dame, IN 46556USA
  2. 2.Krannert School of Management, Purdue University, West Lafayette, IN 47907USA

Personalised recommendations