Towards a Better Understanding of the Functionality of a Conflict-Driven SAT Solver

  • Nachum Dershowitz
  • Ziyad Hanna
  • Alexander Nadel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)

Abstract

We show that modern conflict-driven SAT solvers implicitly build and prune a decision tree whose nodes are associated with flipped variables. Practical usefulness of conflict-driven learning schemes, like 1UIP or AllUIP, depends on their ability to guide the solver towards refutations associated with compact decision trees. We propose an enhancement of 1UIP that is empirically helpful for real-world industrial benchmarks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moskewicz, M.W., et al.: Chaff: Engineering an efficient SAT solver. In: DAC’01, Las Vegas, NV, pp. 530–535 (2001), doi:10.1145/378239.379017Google Scholar
  2. 2.
    Nadel, A., et al.: Eureka-2006 SAT solver, http://fmv.jku.at/sat-race-2006/descriptions/4-Eureka.pdf
  3. 3.
    Ryan, L.O.: Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon Fraser University, Burnaby, Canada (2004)Google Scholar
  4. 4.
    Silva, J.P.M., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In: ICCAD’96, San Jose, California, United States, pp. 220–227. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  5. 5.
    Zhang, L., et al.: Efficient conflict driven learning in a Boolean satisfiability solver. In: ICCAD’01, San Jose, CA, pp. 279–285. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Nachum Dershowitz
    • 1
    • 3
  • Ziyad Hanna
    • 2
  • Alexander Nadel
    • 1
    • 2
  1. 1.School of Computer Science, Tel Aviv University, Ramat AvivIsrael
  2. 2.Design Technology Solutions Group, Intel Corporation, HaifaIsrael
  3. 3.Microsoft Research, Redmond, WA 

Personalised recommendations