Efficient Generic On-Line/Off-Line Signatures Without Key Exposure

  • Xiaofeng Chen
  • Fangguo Zhang
  • Willy Susilo
  • Yi Mu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4521)

Abstract

The “hash-sign-switch” paradigm was firstly proposed by Shamir and Tauman with the aim to design an efficient on-line/off-line signature scheme. However, all existing on-line/off-line signature schemes based on Shamir-Tauman’s paradigm suffer from the key exposure problem of chameleon hashing. That is, if the signer applies the same hash value more than once to obtain two signatures on two different messages, the recipient can obtain a hash collision and use it to recover the signer’s trapdoor information. Therefore, the signer should pre-compute and store plenty of different chameleon hash values and the corresponding signatures on the hash values in the off-line phase, and send the collision and the signature for a certain hash value in the on-line phase. Hence, the computation and storage cost for the off-line phase and the communication cost for the on-line phase in Shamir-Tauman’s signature scheme are still a little more overload.

In this paper, we first introduce a special double-trapdoor hash family based on the discrete logarithm assumption to solve this problem. We then apply the “hash-sign-switch” paradigm to propose a much more efficient generic on-line/off-line signature scheme. Additionally, we use a one-time trapdoor/hash key pair for each message signing, which prevents the recipient from recovering the trapdoor information of the signer and computing other collisions.

Keywords

On-line/off-line signatures Chameleon hashing Key exposure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., de Medeiros, B.: Identity-based chameleon hash and applications. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Ateniese, G., de Medeiros, B.: On the key-exposure problem in chameleon hashes. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Crutchfield, C., Molnar, D., Turner, D., Wagner, D.: Generic on-line/off-line threshold signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 58–74. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  8. 8.
    Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Even, S., Goldreich, O., Micali, S.: On-line/Off-line digital signatures. Journal of Cryptology 9(1), 35–67 (1996)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  13. 13.
    Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Proceeding of Network and Distributed System Security 2000, 143–154 (2000)Google Scholar
  17. 17.
    Kurosawa, K., Schmidt-Samoa, K.: New on-line/off-line signature schemes without random oracles. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 330–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryptology 14(4), 255–293 (2001)MATHMathSciNetGoogle Scholar
  19. 19.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  20. 20.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptography 13(3), 361–396 (2000)MATHGoogle Scholar
  21. 21.
    Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 239–252 (1991)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Xiaofeng Chen
    • 1
    • 3
  • Fangguo Zhang
    • 2
    • 3
  • Willy Susilo
    • 4
  • Yi Mu
    • 4
  1. 1.Department of Computer Science, Sun Yat-sen University, Guangzhou 510275P.R. China
  2. 2.Department of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275P.R. China
  3. 3.Guangdong Key Laboratory of Information Security Technology, Guangzhou 510275P.R. China
  4. 4.Centre for Computer and Information Security Research, School of Computer Science and Software Engineering, University of WollongongAustralia

Personalised recommendations