Advertisement

Cut Elimination in Deduction Modulo by Abstract Completion

  • Guillaume Burel
  • Claude Kirchner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4514)

Abstract

Deduction Modulo implements Poincarés principle by identifying deduction and computation as different paradigms and making their interaction possible. This leads to logical systems like the sequent calculus or natural deduction modulo. Even if deduction modulo is logically equivalent to first-order logic, proofs in such systems are quite different and dramatically simpler with one cost: cut elimination may not hold anymore. We prove first that it is even undecidable to know, given a congruence over propositions, if cuts can be eliminated in the sequent calculus modulo this congruence.

Second, to recover the cut admissibility, we show how computation rules can be added following the classical idea of completion a la Knuth and Bendix. Because in deduction modulo, rewriting acts on terms as well as on propositions, the objects are much more elaborated than for standard completion. Under appropriate hypothesis, we prove that the sequent calculus modulo is an instance of the powerful framework of abstract canonical systems and that therefore, cuts correspond to critical proofs that abstract completion allows us to eliminate.

In addition to an original and deep understanding of the interactions between deduction and computation and of the expressivity of abstract canonical systems, this provides a mechanical way to transform a sequent calculus modulo into an equivalent one admitting the cut rule, therefore extending in a significant way the applicability of mechanized proof search in deduction modulo.

Keywords

Knuth-Bendix completion automated deduction and interactive theorem proving cut elimination deduction modulo proof ordering abstract canonical system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiguier, M., Boin, C., Longuet, D.: On generalized theorems for normalization of proofs. Technical report, LaMI - CNRS and Université d’Evry Val d’Essonne (2005)Google Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. Journal of Automated Reasoning 28, 321–336 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Logic 8 (2007)Google Scholar
  5. 5.
    Bonichon, R.: TaMeD: A tableau method for deduction modulo. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 445–459. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Burel, G., Kirchner, C.: Completion is an instance of abstract canonical system inference. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 497–520. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Burel, G., Kirchner, C.: Cut elimination in deduction modulo by abstract completion (full version). Research report (2007), http://hal.inria.fr/inria-00132964
  8. 8.
    Crabbé, M.: Non-normalisation de la théorie de Zermelo. Manuscript (1974)Google Scholar
  9. 9.
    Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17, 279–301 (1982)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dershowitz, N.: Canonicity. In: Dahn, I., Vigneron, L. (eds.) FTP. Electronic Notes in Theoretical Computer Science, vol. 86, Elsevier, Amsterdam (2003)Google Scholar
  11. 11.
    Dershowitz, N., Kirchner, C.: Abstract saturation-based inference. In: LICS, pp. 65–74. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  12. 12.
    Dershowitz, N., Kirchner, C.: Abstract Canonical Presentations. Theoretical Computer Science 357, 53–69 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression of higher-order logic. Mathematical Structures in Computer Science 11, 1–25 (2001)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31, 33–72 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68, 1289–1316 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Computer Science and Technology Series, vol. 5. Harper & Row, New York (1986), Revised On-Line Version (2003), http://www.cis.upenn.edu/~jean/gbooks/logic.html.MATHGoogle Scholar
  20. 20.
    Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (1934), Translated in Szabo (ed.) The Collected Papers of Gerhard Gentzen as “Investigations into Logical Deduction”Google Scholar
  21. 21.
    Hermant, O.: Méthodes Sémantiques en Déduction Modulo. PhD thesis, École Polytechnique (2005)Google Scholar
  22. 22.
    Hermant, O.: Semantic cut elimination in the intuitionistic sequent calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 221–233. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)Google Scholar
  24. 24.
    Peterson, G., Stickel, M.E.: Complete sets of reductions for some equational theories. Journal of the ACM 28, 233–264 (1981)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Guillaume Burel
    • 1
    • 3
  • Claude Kirchner
    • 2
    • 3
  1. 1.Université Henri Poincaré & LORIA 
  2. 2.INRIA & LORIA 
  3. 3.UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP 

Personalised recommendations