On Decidability and Expressiveness of Propositional Interval Neighborhood Logics

  • Davide Bresolin
  • Valentin Goranko
  • Angelo Montanari
  • Guido Sciavicco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4514)


Interval-based temporal logics are an important research area in computer science and artificial intelligence. In this paper we investigate decidability and expressiveness issues for Propositional Neighborhood Logics (PNLs). We begin by comparing the expressiveness of the different PNLs. Then, we focus on the most expressive one, namely, PNLπ + , and we show that it is decidable over various classes of linear orders by reducing its satisfiability problem to that of the two-variable fragment of first-order logic with binary relations over linearly ordered domains, due to Otto. Next, we prove that PNLπ +  is expressively complete with respect to such a fragment. We conclude the paper by comparing PNLπ +  expressiveness with that of other interval-based temporal logics.


neighbourhood interval logics decidability expressiveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives of Mathematical Logic. Springer, Heidelberg (1997)MATHGoogle Scholar
  2. 2.
    Bresolin, D., Montanari, A.: A tableau-based decision procedure for right propositional neighborhood logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 63–77. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm for propositional neighborhood logic. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right Propositional Neighborhood Logic. Journal of Automated Reasoning (2006)Google Scholar
  5. 5.
    Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. Information and Computation 179(2), 279–295 (2002)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Gabbay, D.M., Hodkinson, I.M., Reynolds, M.: Temporal Logic: Mathematical Foundations and Computational Aspects. Oxford University Press, Oxford (1994)MATHGoogle Scholar
  7. 7.
    Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)MathSciNetGoogle Scholar
  8. 8.
    Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics and duration calculi. J. of Applied Non-Classical Logics 14(1–2), 9–54 (2004)CrossRefGoogle Scholar
  9. 9.
    Goranko, V., Montanari, A., Sciavicco, G., Sala, P.: A general tableau method for propositional interval temporal logics: Theory and implementation. Journal of Applied Logic 4(3), 305–330 (2006)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., et al. (eds.) Handbook of Modal Logic, pp. 249–329. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  11. 11.
    Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bulletin of Symbolic Logic 3(1), 53–69 (1997)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the ACM 38(4), 935–962 (1991)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Immerman, N., Kozen, D.: Definability with bounded number of bound variables. Information and Computation 83(2), 121–139 (1989)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Kamp, H.: Events, instants and temporal reference. In: Bäuerle, R., Egli, U., Schwarze, C. (eds.) Semantics from different points of view, pp. 376–417. Walter de Gruyter, Berlin (1979)Google Scholar
  15. 15.
    Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: He, J., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Mortimer, M.: On languages with two variables. Zeitschr. f. math. Logik u. Grundlagen d. Math 21, 135–140 (1975)MathSciNetMATHGoogle Scholar
  17. 17.
    Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept. of Computer Science, Stanford University, Stanford, CA (1983)Google Scholar
  18. 18.
    Otto, M.: Two variable first-order logic over ordered domains. Journal of Symbolic Logic 66(2), 685–702 (2001)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Scott, D.: A decision method for validity of sentences in two variables. Journal of Symbolic Logic 27, 377 (1962)Google Scholar
  20. 20.
    Shapirovsky, I., Shehtman, V.: Chronological future modality in Minkowski spacetime. In: Balbiani, P., Suzuki, N.Y., Wolter, F., Zakharyaschev, M. (eds.) Advances in Modal Logic, vol. 4, pp. 437–459. King’s College Publications, London (2003)Google Scholar
  21. 21.
    Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame Journal of Formal Logic 31(4), 529–547 (1990)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computation 1(4), 453–476 (1991)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Davide Bresolin
    • 1
  • Valentin Goranko
    • 2
  • Angelo Montanari
    • 1
  • Guido Sciavicco
    • 3
  1. 1.Department of Mathematics and Computer Science, University of Udine, UdineItaly
  2. 2.School of Mathematics, University of the Witwatersrand, JohannesburgSouth Africa
  3. 3.Department of Information Engineering and Communications, University of Murcia, MurciaSpain

Personalised recommendations