Advertisement

Weighted O-Minimal Hybrid Systems Are More Decidable Than Weighted Timed Automata!

  • Patricia Bouyer
  • Thomas Brihaye
  • Fabrice Chevalier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4514)

Abstract

We consider weighted o-minimal hybrid systems, which extend classical o-minimal hybrid systems with cost functions. These cost functions are “observer variables” which increase while the system evolves but do not constrain the behaviour of the system. In this paper, we prove two main results: (i) optimal o-minimal hybrid games are decidable; (ii) the model-checking of WCTL, an extension of CTL which can constrain the cost variables, is decidable over that model. This has to be compared with the same problems in the framework of timed automata where both problems are undecidable in general, while they are decidable for the restricted class of one-clock timed automata.

Keywords

Cost Function Hybrid System Optimal Cost Winning Strategy Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABM04]
    Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed games. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)Google Scholar
  2. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [AHLP00]
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. of the IEEE 88, 971–984 (2000)CrossRefGoogle Scholar
  4. [ALP01]
    Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. [BBBR06]
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem. Submitted (2006)Google Scholar
  6. [BBC06]
    Bouyer, P., Brihaye, T., Chevalier, F.: Control in o-minimal hybrid systems. In: LICS’06: Logic in Computer Science, pp. 367–378. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  7. [BBL04]
    Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)Google Scholar
  8. [BBM06]
    Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Information Processing Letters 98(5), 188–194 (2006)CrossRefMathSciNetGoogle Scholar
  9. [BBR04]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)Google Scholar
  10. [BBR05]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On Optimal Timed Strategies. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [BBR06]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On model-checking timed automata with stopwatch observers. Information and Computation 204(3), 408–433 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [BCFL04]
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)Google Scholar
  13. [BFH+01]
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [BLM07]
    Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed automata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. [BLMR06]
    Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies in one clock priced timed games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 345–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [BM05]
    Brihaye, T., Michaux, C.: On the expressiveness and decidability of o-minimal hybrid systems. Journal of Complexity 21(4), 447–478 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [BMRT04]
    Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-Minimal Hybrid Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg (2004)Google Scholar
  18. [Bri06a]
    Brihaye, T.: Verification and Control of O-Minimal Hybrid Systems and Weighted Timed Automata. Thèse de doctorat, Université Mons-Hainaut, Belgium (2006)Google Scholar
  19. [Bri06b]
    Brihaye, T.: Words and bisimulation of dynamical systems. Journal of Automata, Languages and Combinatorics, To appear (2006)Google Scholar
  20. [cor06]
  21. [Dav99]
    Davoren, J.M.: Topologies, continuity and bisimulations. Theoretical Informatics and Applications 33(4-5), 357–382 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Gen05]
    Gentilini, R.: Reachability problems on extended o-minimal hybrid automata. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 162–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. [Hen95]
    Henzinger, T.A.: Hybrid automata with finite bisimulations. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)Google Scholar
  24. [Hen96]
    Henzinger, T.A.: The theory of hybrid automata. In: LICS’96: Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  25. [HMR05]
    Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Transactions on Computational Logic 6(1), 1–32 (2005)CrossRefMathSciNetGoogle Scholar
  26. [Hod97]
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  27. [KV06]
    Korovina, M.V., Vorobjov, N.: Upper and lower bounds on sizes of finite bisimulations of pfaffian hybrid systems. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 267–276. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. [LMM02]
    La Torre, S., Mukhopadhyay, S., Murano, A.: Optimal-reachability and control for acyclic weighted timed automata. In: TCS’02: Theoretical Computer Science. IFIP Conf. Proc., vol. 223, pp. 485–497. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  29. [LPS00]
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals, and Systems 13(1), 1–21 (2000), Appeared as a preprint in 1998zbMATHCrossRefMathSciNetGoogle Scholar
  30. [PS86]
    Pillay, A., Steinhorn, C.: Definable sets in ordered structures. Transactions of the American Mathematical Society 295(2), 565–592 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [Ras99]
    Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real-Time. Thèse de doctorat, Université Namur, Belgium (1999)Google Scholar
  32. [vdD98]
    van den Dries, L.: Tame Topology and O-Minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  33. [Wil96]
    Wilkie, A.J.: Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. Journal of the AMS 9(4), 1051–1094 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Thomas Brihaye
    • 1
  • Fabrice Chevalier
    • 1
  1. 1.LSV - CNRS & ENS de Cachan, 61, avenue du Président Wilson, 94230 CachanFrance

Personalised recommendations