Total Public Announcements

  • David Steiner
  • Thomas Studer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4514)

Abstract

We present a dynamic epistemic logic for knowledge change of rational agents. Existing approaches only deal with partial public announcements, that means an announcement may lead to an inconsistent state. We introduce an extension of the multi-modal logic S5n featuring total public announcements where an update cannot result in an inconsistency. We also study total public announcements in the context of common knowledge and relativized common knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plaza, J.A.: Logics of public communications. In: Emrich, M., Pfeifer, M., Hadzikadic, M., Ras, Z. (eds.) Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)Google Scholar
  2. 2.
    Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: TARK ’98: Proceedings of the 7th conference on Theoretical aspects of rationality and knowledge, pp. 43–56. Morgan Kaufmann, San Francisco (1998)Google Scholar
  4. 4.
    van Benthem, J.: One is a lonely number: on the logic of communication. In: Chatzidakis, Z., Koepke, P., Pohlers, W. (eds.) Logic Colloquium ’02. Lecture Notes in Logic, vol. 27, pp. 96–129. A.K. Peters, Wellesley (2006)Google Scholar
  5. 5.
    van Benthem, J., van Eijck, J., Kooi, B.: Common knowledge in update logics. In: TARK ’05: Proceedings of the 10th conference on Theoretical aspects of rationality and knowledge, National University of Singapore, pp. 253–261 (2005)Google Scholar
  6. 6.
    van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Information and Computation 204(11), 1620–1662 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    van Benthem, J., Kooi, B.: Reduction axioms for epistemic actions. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) AiML ’04: Proceedings of Advances in Modal Logic 5. Number UMCS-04-9-1 in Technical Report Series, University of Manchester, pp. 197–211 (2004)Google Scholar
  8. 8.
    van Ditmarsch, H.: Knowledge games. PhD thesis, University of Groningen, ILLC Dissertation Series 2000-06 (2000)Google Scholar
  9. 9.
    van Ditmarsch, H.: The russian cards problem. Studia Logica 75(4), 31–62 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic. Synthese Library, vol. 337. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese 151(2), 202–232 (2005)Google Scholar
  12. 12.
    Renne, B.: Bisimulation and public announcements in logics of evidence-based knowledge. In: Artemov, S., Parikh, R. (eds.) ESSLLI ’06: Proceedings of the European Summer School in Logic, Language and Information, Workshop on Rationality and Knowledge, Association for Logic, Language and Information, pp. 112–123 (2006)Google Scholar
  13. 13.
    Steiner, D.: A system for consistency preserving belief change. In: Artemov, S., Parikh, R. (eds.) ESSLLI ’06: Proceedings of the European Summer School in Logic, Language and Information, Workshop on Rationality and Knowledge, Association for Logic, Language and Information, pp. 133–144 (2006)Google Scholar
  14. 14.
    Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of Logic, Language and Information 6(2), 147–169 (1997)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David Steiner
    • 1
  • Thomas Studer
    • 1
  1. 1.Universität Bern, Institut für Informatik und angewandte Mathematik, Neubrückstrasse 10, CH-3012 Bern 

Personalised recommendations