Density Elimination and Rational Completeness for First-Order Logics

  • Agata Ciabattoni
  • George Metcalfe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4514)


Density elimination by substitutions is introduced as a uniform method for removing applications of the Takeuti-Titani density rule from proofs in first-order hypersequent calculi. For a large class of calculi, density elimination by this method is guaranteed by known sufficient conditions for cut-elimination. Moreover, adding the density rule to any axiomatic extension of a simple first-order logic gives a logic that is rational complete; i.e., complete with respect to linearly and densely ordered algebras: a precursor to showing that it is a fuzzy logic (complete for algebras with a real unit interval lattice reduct). Hence the sufficient conditions for cut-elimination guarantee rational completeness for a large class of first-order substructural logics.


Fuzzy Logic Rational Completeness Propositional Variable Sequent Calculus Substructural Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, A.: A constructive analysis of RM. Journal of Symbolic Logic 52(4), 939–951 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 187–201. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ciabattoni, A.: Automated generation of analytic calculi for logics with linearity. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 503–517. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Ciabattoni, A., Esteva, F., Godo, L.: T-norm based logics with n-contraction. Neural Network World 12(5), 441–453 (2002)Google Scholar
  5. 5.
    Cintula, P., Hájek, P.: On theories and models in fuzzy predicate logics. Journal of Symbolic Logic 71(3), 832–863 (2006)Google Scholar
  6. 6.
    Esteva, F., Gispert, J., Godo, L., Montagna, F.: On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic. Studia Logica 71(2), 199–226 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  9. 9.
    Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s MTL logic. Studia Logica 70(2), 183–192 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Metcalfe, G., Montagna, F.: Substructural fuzzy logics. To appear in Journal of Symbolic Logic,
  11. 11.
    Montagna, F., Ono, H.: Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL∀. Studia Logica 71(2), 227–245 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Ono, H., Komori, Y.: Logic without the contraction rule. Journal of Symbolic Logic 50, 169–201 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Takano, M.: Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba J. Math. 11, 851–866 (1984)MathSciNetGoogle Scholar
  14. 14.
    Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. Journal of Symbolic Logic 49(3), 851–866 (1984)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Agata Ciabattoni
    • 1
  • George Metcalfe
    • 2
  1. 1.Institute of Discrete Mathematics and Geometry, Technical University Vienna, Wiedner Hauptstrasse 8-10, A-1040 WienAustria
  2. 2.Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville TN 37240USA

Personalised recommendations