2x2 Bismuth-Oxide-Fiber Based Crossbar Switch for All-Optical Switching Architectures

  • O. Zouraraki
  • P. Bakopoulos
  • K. Vyrsokinos
  • H. Avramopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4534)


We demonstrate an optically controlled 2x2 Crossbar switch suitable for all-optical switching architectures. The switch is based on an Ultrafast Nonlinear Interferometer (UNI) configuration and uses 80 centimeters of highly nonlinear Bismuth Oxide fiber. Error-free operation is demonstrated with 10 and 40 Gb/s input signals, with power penalties in its BAR and CROSS states of less than 0.3 dB and 1 dB respectively. The short length of the highly nonlinear Bismuth Oxide fiber ensures compact size, small latency and good operational stability of the switch.


Optically controlled 2x2 switch Bismuth Oxide Nonlinear fiber Ultrafast Nonlinear Interferometer (UNI) all-optical signal processing 


  1. 1.
    Burmeister, E.F., Bowers, J.E.: Integrated Gate Matrix Switch for Optical Packet Buffering. IEEE Photon. Technol. Lett. 18(1), 103–105 (2006)CrossRefGoogle Scholar
  2. 2.
    Papadimitriou, G.I., Papazoglou, C., Pomportsis, A.S.: Optical switching: switch fabrics, techniques, and architectures. IEEE/OSA J. Lightwave Technol. 21(2), 384–405 (2003)CrossRefGoogle Scholar
  3. 3.
    Hunter, D.K., Smith, D.G.: New architectures for optical TDM switching. IEEE/OSA J. Lightwave Technol. 11(3), 495–511 (1993)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ramaswami, R., Sivarajan, K.N.: Optical Networks. A Practical Perspective, 2nd edn. Academic Press, London (2002)Google Scholar
  5. 5.
    Hunter, D.K., Chia, M.C., Andonovic, I.: Buffering in optical packet switches. IEEE/OSA J. Lightwave Technol. 16(12), 2081–2094 (1998)CrossRefGoogle Scholar
  6. 6.
    Hunter, D.K., et al.: 2 * 2 buffered switch fabrics for traffic routing, merging, and shaping in photonic cell networks. IEEE/OSA J. Lightwave Technol. 15(1), 86–101 (1997)CrossRefGoogle Scholar
  7. 7.
    Larsen, C.P., Gustavsson, M.: Linear crosstalk in 4 * 4 semiconductor optical amplifier gate switch matrix. IEEE/OSA J. Lightwave Technol. 15(10), 1865–1870 (1997)CrossRefGoogle Scholar
  8. 8.
    Hasegawa, T., et al.: Bismuth-based extra-high nonlinear optical fiber. In: Proc. Conference on Laser and Electro-Optics (CLEO), Baltimore, pp. 2094–2096 CFC2 (2005)Google Scholar
  9. 9.
    Meloni, G., et al.: Ultrafast All-Optical ADD–DROP Multiplexer Based on 1-m-Long Bis-muth Oxide-Based Highly Nonlinear Fiber. IEEE Photon. Technol. Lett. 17(12), 2661–2663 (2005)CrossRefGoogle Scholar
  10. 10.
    Lee, J.H., et al.: Wide-Band Tunable Wavelength Conversion of 10-Gb/s Nonreturn-to-Zero Signal Using Cross-Phase-Modulation-Induced Polarization Rotation in 1-m Bismuth Ox-ide-Based Nonlinear Optical Fiber. IEEE Photon. Technol. Lett. 18(1), 298–300 (2006)CrossRefGoogle Scholar
  11. 11.
    Theophilopoulos, G., et al.: Optically Addressable 2x2 Exchange Bypass Packet Switch. IEEE Photon. Technol. Lett. 14(7), 998–1000 (2002)CrossRefGoogle Scholar
  12. 12.
    Yow, C.K., Chai, Y.J., Tee, C.W., McDougall, R., Penty, R.V., White, I.H.: All-Optical Multiwavelength Bypass-Exchange Switching Using a Hybrid-Integrated Mach-Zehnder Switch. In: Proc. Eur. Conf. Optical Communication, vol. 3, pp. 704–705, We4.p.118 (2004)Google Scholar
  13. 13.
    Sugimoto, N., Kanbara, H., Fujiwara, S., Tanaka, K., Shimizugawa, Y., Hirao, K.: Third-order optical nonlinearities and their ultrafast response in Bi2O3 - B2O3 - SiO2 glasses. J. Opt. Soc. Am. B 16, 1904–1908 (1999)CrossRefGoogle Scholar
  14. 14.
    Varvarigos, E.M.: The “packing” and the “scheduling packet” switch architectures for almost all-optical lossless networks. IEEE/OSA J. Lightwave Technol. 16(10), 1757–1767 (1998)CrossRefGoogle Scholar
  15. 15.
    Tsiokos, D., et al.: All-Optical 10 Gb/s Header Replacement for Variable Length Data Pack-ets. In: Proc. Eur. Conf. Optical Communication (ECOC), Rimini, Italy, We4.p. 83 (2003)Google Scholar
  16. 16.
    Yao, S., et al.: All-optical packet switching for metropolitan area networks: opportunities and challenges. IEEE Communications Magazine 39(3), 142–148 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • O. Zouraraki
    • 1
  • P. Bakopoulos
    • 1
  • K. Vyrsokinos
    • 1
  • H. Avramopoulos
    • 1
  1. 1.Photonics Communications Research Laboratory, National Technical University of Athens, Zographou, GR 15773, AthensGreece

Personalised recommendations