Multicast Overlay Spanning Tree Protocol for Ad Hoc Networks

  • Georgios Rodolakis
  • Amina Meraihi Naimi
  • Anis Laouiti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4517)


In this paper we present an extension to the OLSR unicast routing protocol to support multicast routing in mobile ad hoc networks. The proposed protocol is based on Multicast Overlay Spanning Trees (MOST). The main benefits of this approach are twofold. Firstly, it implies that only nodes interested in taking part in the multicast communication need to participate in the protocol operation, which is transparent to other OLSR nodes. In addition, the MOST approach scaling properties achieve the theoretical performance bounds concerning the capacity of multicast communication in massive ad hoc networks. We perform simulations of the MOST protocol under the ns-2 simulator to compare with the theoretical results, and we present a fully working implementation for real network environments.


Minimum Span Tree Delivery Ratio Packet Delivery Ratio Multicast Tree Multicast Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    IEEE 802.11 Standard, Wireless LAN Medium Access Control and Physical layer Specifications (1997)Google Scholar
  4. 4.
    Adjih, C., Georgiadis, L., Jacquet, P., Szpankowski, W.: Is the internet fractal: The multicast power law revisited. In: SODA (2002)Google Scholar
  5. 5.
    Chuang, J.C.-I., Sirbu, M.A.: Pricing multicast communication: A cost-based approach. Telecommunication Systems 17(3), 281–297 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Clausen, T., Jacquet, P. (eds.): Optimized link state routing protocol (OLSR). RFC 3626, Network Working Group (October 2003)Google Scholar
  7. 7.
    Fenner, W.: Internet Group Management Protocol, Version 2. RFC 2236 (1997)Google Scholar
  8. 8.
    Garcia-Luna-Aceves, J., Madruga, E.L.: The core-assisted mesh protocol. Journal on Selected Areas in Communications 17(8), 1380–1394 (1999)CrossRefGoogle Scholar
  9. 9.
    Gupta, P., Kumar, P.R.: Capacity of wireless networks. IEEE Transactions on Information Theory 46(2), 388–404 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jacquet, P., Rodolakis, G.: Multicast scaling properties in massively dense ad hoc networks. In: SaNSO, Fukuoka, Japan (2005)Google Scholar
  11. 11.
    Jetcheva, J., Johnson, D.B.: Adaptive demand-driven multicast routing in multi-hop wireless ad hoc networks. In: Proceedings of the Second Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc (2001)Google Scholar
  12. 12.
    Laouiti, A., Jacquet, P., Minet, P., Viennot, L., Clausen, T., Adjih, C.: Multicast Optimized Link State Routing. INRIA research report RR-4721 (2003)Google Scholar
  13. 13.
    Lee, S., Su, W., Gerla, M.: On demand multicast routing protocol in multihop wireless mobile networks. Mobile Networks and Applications (special issue on Multipoint Communication in Wireless Mobile Networks) 7(6), 441–453 (2000)CrossRefGoogle Scholar
  14. 14.
    Liu, M., Talpade, R.R., McAuley, A., Bommaiah, E.: AMRoute: Adhoc Multicast Routing Protocol. UMD TechReport 99-8Google Scholar
  15. 15.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV) routing, RFC 3561 (2003)Google Scholar
  16. 16.
    Royer, E., Perkins, C.: Multicast Ad hoc On-Demand Distance Vector (MAODV) Routing. IETF, Intemet Draft: draft-ietf-manet-maodv-00.txt (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Georgios Rodolakis
    • 1
  • Amina Meraihi Naimi
    • 1
  • Anis Laouiti
    • 1
  1. 1.INRIA and Ecole PolytechniqueFrance

Personalised recommendations