Abstract

This chapter explains the historic impact and future direction of geoinformatics on geological sciences. The history and the purpose of geological surveys is discussed and an introduction into the basic techniques of traditional field mapping is presented. The authors then discuss the recent emergence of digital field capture tools and 3-D geological modelling software and methodologies which is beginning to replace the 2-dimensional techniques. The main impact of these advances is that geologists are now able to capture their knowledge in digital 3-dimensional form freeing them from the constraint of 2-dimensional media such as paper and later GIS. The impact on the delivery of geoscience information through 3-dimensional viewers and over the web is going to revolutionise the way in which geologists are able to communicate their science. An outlook is also given why geology is only a small (but important) part of the wider environmental science community and how the need for the whole Earth system science is forcing geological survey organisations to cooperate closer with other disciplines. Finally this chapter details several global initiatives that have gone a long way to achieving global agreements on standards, institutional arrangements and policies to enable geoscientific information to be accessible across discipline and political boundaries. The conceptual and compu tational integration and interoperability of static models, e.g. geology, infrastructure, with dynamic models, e.g. groundwater and flood forecast models, to provide decision makers with science based decision making tools will be the challenge for geoinformatics for years to come.

Abbreviations

1G-E

OneGeology-Europe

2-D

two-dimensional

3-D

three-dimensional

3DWEG

3D Web Editeur Geologique

4-D

four-dimensional

BGS

British Geological Survey

BRGM

French Bureau de recherches géologiques et minières

BSI

British Standards Institution

CAD

computer aided design

CAG

Colloquium on African Geology

CD

committee draft

CEN

Comité Européen de Normalisation

CGI

Commission for the Management and Application of Geoscience Information

CGI

Common Gateway Interface

DIN

Deutsches Institut für Normung e.V., German Institute for Standardization

DT

Drafting Team

DTM

digital terrain model

EMP

environmental modeling platform

ERT

Electrical Resistivity Tomography

GA

Geoscience Australia

GEO

Global Environment Outlook

GEO

Group on Earth Observations

GEOSS

Group on Earth Observation System of Systems

GGIC

Australian Government Geologists Information Committee

GI

geographic information

GIRAF

Geoscience Information in Africa

GIS

Geographic Information System

GML

Geography Markup Language

GNSS

Global Navigation Satellite System

GPR

Ground Penetrating Radar

GPS

Global Positioning System

GSC

Geological Survey of Canada

GSO

geological survey organizations

GeoSciML

GeoScience Markup Language

ICSU

International Council for Science

IGC

International Geological Congress

INSPIRE

Infrastructure for Spatial Information in the European Community

IR

Implementing Rules

ISO

International Organization for Standardization

IT

information technology

IUGS

International Union of Geological Sciences

IWG

Interoperability Working Group

LMO

Legally Mandated Organization

NEPAD

New Partnership for Africaʼs Development

NGO

non-governmental organization

NSDI

National Spatial Data Infrastructure

OAGS

Organization of African Geological Surveys

OGC

Open Geospatial Consortium

PC

Personal Computer

PDA

personal digital assistant

PDF

portable document format (Adobe)

SDI

spatial data infrastructure

SDIC

Spatial Data Interest Community

SEAMIC

Southern and Eastern African Mineral Centre

SGU

Sveriges Geologiska Undersökning

SLEWS

Sensorbased Landslide Early Warning System

SOS

Sensor Observation Service

SWE

Sensor Web Enablement

UN

United Nations

UNECA

United Nations Economic Commission for Africa

UNESCO

United Nations Educational, Scientific and Cultural Organization

USGS

United States Geological Survey

WFS

Web Feature Service

WMS

Web Map Server

WNS

Web Notification Service

WPS

Web Processing Service

WSN

wireless sensor network

XML

Extensible Markup Language

XMML

Exploration and Mining Markup Language

References

  1. 27.1.
    M.J.S. Rudwick: The emergence of a visual language of geological science 1760–1840, Hist. Sci. 14, 149–195 (1976)Google Scholar
  2. 27.2.
    A. Zitzmann, J. Lepper: Geologische Übersichtskarte 1 : 200 000 (GÜK 200) (BGR, Hannover 1979), Blatt CC4718Google Scholar
  3. 27.3.
    R.L. Bernknopf, D.S. Brookshire, D.R. Soller, M.J. McKee, J.F. Sutter, J.C. Matti, R.H. Campbell: Societal value of geologic maps, US Geological Survey Circular, Vol. 1111 (United States Geological Survey, Denver 1993)Google Scholar
  4. 27.4.
    T.V. Loudon: Geoscience After IT. A View of the Present and Future Impact of Information Technology in Geoscience, Computer Methods in Geosciences, Vol. 17 (Pergamon, Kidlington 2000)Google Scholar
  5. 27.5.
    K. Asch: The 1 : 5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-Enables Concept (BGR, Hannover 2003)Google Scholar
  6. 27.6.
    A. Maltman: Geological Maps – An Introduction, 2nd edn. (Wiley, Chichester 1998)Google Scholar
  7. 27.7.
    G.F. Bonham-Carter: Geographic Information Systems for Geoscientists, Modelling with GIS, Computer Methods in the Geosciences, Vol. 13 (Pergamon, Kidlington 1994)Google Scholar
  8. 27.8.
    K. Asch (Ed.): GIS-gestützte Standortfindung für Siedlungsabfalldeponien. In: GIS in Geowissenschaften und Umwelt (Springer, Berlin Heidelberg 1999) pp. 63–71, in GermanGoogle Scholar
  9. 27.9.
    R.C. Berg, S.J. Mathers, H. Kessler, D. Keefer (Eds): Synopsis of current 3D geological mapping and modeling in geological survey organizations, Illinois State Geol. Surv. Circ. 578, 92 (2011)Google Scholar
  10. 27.10.
  11. 27.11.
    D.P. Bickmore, B. Kelk: Production of a multi-coloured geological map by automated means, Proc. 24th IGC (IGC, Ottawa 1972) pp. 121–127Google Scholar
  12. 27.12.
    K. Asch, M. Bavec, S. Bergman, M. Carter, P. Coupek, R. Colbach, P.-Y. Declercq, E. González Clavijo, S. Gruijters, P. Gürtlerova, S. Hennings, D. Janjou, S. Kacer, M. Klicker, M. Nironen, M. Novak, L. Orosz, M. Pantaloni, M. Pielach, K. Ploom, F. Perez Cerdan, P. Riisager, C. Schubert, J. Schokker, F. Sikhegyi, A. Smith, U. Stepién: OneGeology-Europe. Scientific, Semantic and Geometric Harmonisation of Spatial Geological Data in Europe – Issues and Recommendations, EC Report ECP-2007-GEO-317001 (2010) p. 11Google Scholar
  13. 27.13.
    North American Geologic Map Data Model Steering Committee: NADM Conceptual Model 1.0 – A conceptual model for geologic map information: US Geological Survey Open-File Report 2004-1334 (2004), available from http://pubs.usgs.gov/of/2004/1334; also published as Geological Survey of Canada Open File 4737, 1 CD-ROM (2004)
  14. 27.14.
  15. 27.15.
    M. Perrin, B. Zhu, J.F. Rainaud, S. Schneider: Knowledge-driven applications for geological modelling, J. Petrol. Sci. Eng. 47, 89–104 (2005)CrossRefGoogle Scholar
  16. 27.16.
    M.S. Rosenbaum, A.K. Turner (Eds.): New Paradigms in Subsurface Prediction, Lecture Notes in Earth Sciences, Vol. 99 (Springer, Berlin 2003)Google Scholar
  17. 27.17.
    I. Jackson: Addressing the real needs of all the users of geological information: The opportunities, issues and problems. In: The Current Role of Geological Mapping in Geosciences, NATO Sci. Ser. IV: Earth and Environmental Sciences, Vol. 56 (2005) pp. 59–68Google Scholar
  18. 27.18.
    A.K. Turner, C.W. Gable: A review of geological modelling. In: Three-Dimensional Geologic Mapping for Groundwater Applications, Open-file Report 07-4 (Minnesota Geological Survey 2007), pp. 75–79Google Scholar
  19. 27.19.
    A. Whittaker (Ed.): Atlas of Onshore Sedimentary Basins in England and Wales: Post-Carboniferous Tectonics and Stratigraphy (British Geological Survey, Glasgow 1985)Google Scholar
  20. 27.20.
  21. 27.21.
    A. Scheib, J.D.O. Williams: GSI3D and soils – building detailed 3D models of the shallow subsurface, Extended Abstracts of the 2nd Intern. GSI3D Conf. (British Geological Survey, Keyworth 2008) pp. 20–21Google Scholar
  22. 27.22.
    A.K. Turner (Ed.): Three-Dimensional Modelling with Geoscientific Information Systems, NATO ASI Series C: Mathematical and Physical Sciences, Vol. 354 (Kluwer, Dordrecht 1991)Google Scholar
  23. 27.23.
    Slews: http://slews.de/index_en.php (accessed May 7, 2011)
  24. 27.24.
    J.-L. Mallet: GeoModelling (Oxford Univ. Press, New York 2002)Google Scholar
  25. 27.25.
    A. Zanchi, M. DeDonatis, A. Gibbs, J.-L. Mallet: Imaging geology in 3D, Comput. Geosci. 35, 1–3 (2009)CrossRefGoogle Scholar
  26. 27.26.
    H.-G. Sobisch: Ein digitales räumliches Modell des Quartärs der GK25 Blatt 3508 Nordhorn auf der Basis vernetzter Profilschnitte (Shaker, Aachen 2000) p. 113, in German (A digital spatial model of the Quaternary at 1 : 25 000 scale of Sheet 3508 Nordhorn based on intersecting cross-sections)Google Scholar
  27. 27.27.
    H. Kessler, S.J. Mathers, H.-G. Sobisch: The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology, Comput. Geosci. 35, 1311–1321 (2009)CrossRefGoogle Scholar
  28. 27.28.
    P.G. Fookes: The first Glossop lecture: Geology for engineers: the geological model, prediction and performance, Q. J. Eng. Geol. 30, 293–431 (1997)CrossRefGoogle Scholar
  29. 27.29.
    H. Kessler, S.J. Mathers: From geological maps to models – finally capturing the geologistsʼ vision, Geoscientist 14(10), 4–6 (2004)Google Scholar
  30. 27.30.
    S.J. Mathers, J.A. Zalasiewicz: Producing a comprehensive geological map, a case study – The Aldeburgh-Orford area of East Anglia, Mod. Geol. 9, 207–220 (1985)Google Scholar
  31. 27.31.
    H. Mengeling: Geologische Karte von Niedersachsen 1 : 25 000. Erläuterungen zu Blatt 3508 Nordhorn (NLFB, Hannover 1999), in German (Geological map of Sheet 3508 Nordhorn, Lower Saxony at 1 : 25 000 scale)Google Scholar
  32. 27.32.
    GSI3D: http://www.gsi3d.org.uk (accessed September 23, 2011)
  33. 27.33.
    GOCAD: http://www.pdgm.com/products/gocad.aspx (accessed May 7, 2011)
  34. 27.34.
  35. 27.35.
  36. 27.36.
    R.L. Terrington, S.J. Mathers, H. Kessler, V. Hulland, S.J. Price: Subsurface viewer 2009. User manual V1.0. (OR/09/027) British Geological Survey Internal Report (2009) available from http://nora.nerc.ac.uk/7195/1/Subsurface_Viewer_2009_UserManual_v1.pdf
  37. 27.37.
  38. 27.38.
    OS (Ordonance Survey) Topography ©Crown Copyright BGS10007897/2009Google Scholar
  39. 27.39.
    N. Stern: Stern Review on the Economics of Climate Change (HM Treasury, London 2006), available from http://www.hm-treasury.gov.uk/sternreview_index.htm Google Scholar
  40. 27.40.
    Intergovernmental Panel on Climate Change (IPCC): Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, ed. by R.K. Pachauri, A. Reisinger (IPCC, Geneva 2007)Google Scholar
  41. 27.41.
    H. Kessler, S.J. Mathers, M. Lelliott, A. Hughes, D. MacDonald: Rigorous 3D geological models as the basis for groundwater modelling. In: Three-dimensional geologic mapping for groundwater applications, Workshop extended abstracts, Denver (2007) available from http://nora.nerc.ac.uk/4129/1/kessler.pdf
  42. 27.42.
    A. Hughes, M. Graham, C. Jackson, M. Mansour, T. Vounaki: ZOOM into GSI3D, Extended Abstracts 2nd Intern. GSI3D Conf. (British Geological Survey, Keyworth 2008) pp. 28–29Google Scholar
  43. 27.43.
    D.R. Sharpe, M.J. Hinton, H.A.J. Russell, A.J. Desbarats: The need for basin analysis in regional hydrogeological studies. Oak Ridges Moraine, Southern Ontario, Geosci. Can. 29(1), 3–20 (2002)Google Scholar
  44. 27.44.
    N. Hadlow, I. Molyneux, A. Gallagher, C. Robelin: The development of chalk catchment ground models in southern England and northern France, Extended Abstracts 2nd Intern. GSI3D Conf. (British Geological Survey, Keyworth 2008) pp. 24–25Google Scholar
  45. 27.45.
    H. Kessler, D. Campbell, J. Ford, J.A. Giles, A. Hughes, I. Jackson, D. Peach, S. Price, H.-G. Sobisch, R. Terrington, B. Wood: Building on geological models – The vision of an environmental modelling platform, Three-dimensional Geological Mapping. Workshop Extended Abstracts, Vol. 2009-4 (Illinois State Geological Survey, 2009) pp. 24–30Google Scholar
  46. 27.46.
    K. Asch: New EC Directive to “INSPIRE” the European geoscience community, Environ. Geol. 57, 959–961 (2009)CrossRefGoogle Scholar
  47. 27.47.
    OneGeology: Portal website: http://portal.onegeology.org/ (Languages: English and French); General website: www.onegeology.org (Languages: English, introductory pages in French, Chinese, Russian, Spanish and Arabic); Website: http://www.bgr.bund.de/OneGeology; Contact: onegeology@bgs.ac.uk
  48. 27.48.
    OneGeology: http://geoportal.onegeology-europe.eu/geoportal/viewer.jsp (accessed May 7, 2011); www.onegeology-Europe.org (accessed 2011-05-08); www.onegeology.org (accessed 2011-05-08);
  49. 27.49.
  50. 27.50.
    S. Haß, C. Arnhardt, K. Asch, T. Fernandez-Steeger: SLEWS: A people-centred landslide early warning system in the context of risk management, Poster 10. Forum Katastrophenvorsorge: Katastrophen – Datenhintergrund und Informationen (Bonn 2009), in GermanGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Bundesanstalt für Geowissenschaften und RohstoffeHannoverGermany
  2. 2.British Geological SurveyNottinghamUK
  3. 3.Geological Modelling SystemsBritish Geological SurveyNottinghamUK

Personalised recommendations