Advertisement

Computational Movement Analysis

  • Joachim GudmundssonEmail author
  • Patrick LaubeEmail author
  • Thomas WolleEmail author
Part of the Springer Handbooks book series (SHB)

Abstract

Recent advances in tracking technologies result in geographic information representing the movement of individuals at previously unseen spatial and temporal granularities. This new, inherently spatiotemporal, kind of geographic information offers new insights into dynamic geographic processes but also challenges the traditionally rather static spatial analysis toolbox. This chapter presents an introductory overview to movement data in general (Sect. 22.2), the theory for modeling and analyzing movement (Sects. 22.2.1, 22.3), as well as a set of key application fields of movement analysis (Sect. 22.3). Finally, the chapter addresses privacy concerns relevant to the analysis of human movement.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Movement Pattern Movement Analysis Movement Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2-D

two-dimensional

3-D

three-dimensional

AmSI

ambient spatial intelligence

CTS

computational transportation science

DTW

dynamic time warping

GI

geographic information

GIS

Geographic Information System

GNSS

Global Navigation Satellite System

GPS

Global Positioning System

GSM

Global System for Mobile communication

ICT

information and communication technology

ID

identifier

ITS

Intelligent Transportation System

LBS

location-based services

LCSS

longest common subsequence

MVR

multi version R-tree

NSI

native space indexing methods

PSI

parametric space indexing method

PoP

Point of Purchase

RFID

Radio Frequency Identification

STAR

spatiotemporal association rules

TPR-tree

time parameterized R-tree

References

  1. 22.1.
    M.C. Gonzalez, C.A. Hidalgo, A.L. Barabasi: Understanding individual human mobility patterns, Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
  2. 22.2.
    W. Kellerer, C. Bettstetter, C. Schwingenschlogl, P. Sties, K.E. Steinberg: (Auto) mobile communication in a heterogeneous and converged world, IEEE Pers. Commun. 8(6), 41–47 (2001)CrossRefGoogle Scholar
  3. 22.3.
    Amisco: Web resource http://www.sport-universal.com (last accessed January 10, 2011)
  4. 22.4.
    M. Holyoak, R. Casagrandi, R. Nathan, E. Revilla, O. Spiegel: Trends and missing parts in the study of movement ecology, Proc. Natl. Acad. Sci. USA 105(49), 19060–19065 (2008)CrossRefGoogle Scholar
  5. 22.5.
    A. Galton: Dynamic collectives and their collective dynamics. In: Spatial Information Theory, Vol. 3693, ed. by A.G. Cohn, D.M. Mark (Springer, Heidelberg 2005) pp. 300–315CrossRefGoogle Scholar
  6. 22.6.
    D.L. Claussen, M.S. Finkler, M.M. Smith: Thread trailing of turtles: Methods for evaluating spatial movements and pathway structure, Can. J. Zool. 75(12), 2120–2128 (1997)CrossRefGoogle Scholar
  7. 22.7.
    S.M. Tomkiewicz, M.R. Fuller, J.G. Kie, K.K. Bates: Global positioning system and associated technologies in animal behaviour and ecological research, Philos. Trans. R. Soc. B 365(1550), 2163–2176 (2010)CrossRefGoogle Scholar
  8. 22.8.
    H. Miller, J. Han (Eds.): Geographic Data Mining and Knowledge Discovery, 2nd edn. (CRC, Boca Raton 2009)Google Scholar
  9. 22.9.
    P. Laube: Progress in movement pattern analysis. In: Behaviour Monitoring and Interpretation – BMI – Smart Environments, Vol. 3, ed. by B. Gottfried, H. Aghajan (IOS, Amsterdam 2009) pp. 43–71Google Scholar
  10. 22.10.
    J. Gudmundsson, M.J. van Kreveld, B. Speckmann: Efficient detection of patterns in 2d trajectories of moving points, GeoInformatica 11(2), 195–215 (2007)CrossRefGoogle Scholar
  11. 22.11.
    T. Hägerstrand: What about people in regional science, Pap. Reg. Sci. Assoc. 24, 7–21 (1970)Google Scholar
  12. 22.12.
    H.J. Miller: Modelling accessibility using space-time prism concepts within geographical information systems, Int. J. Geogr. Inf. Syst. 5(3), 287–301 (1991)CrossRefGoogle Scholar
  13. 22.13.
    F. Schmid, K.-F. Richter, P. Laube: Semantic trajectory compression, Lect. Notes Comput. Sci. 5644, 411–416 (2009)CrossRefGoogle Scholar
  14. 22.14.
    D. Bernstein, A. Kornhauser: An Introduction to Map Matching for Personal Navigation Assistants, Tech. Rep. (New Jersey TIDE Center, Newark 1996)Google Scholar
  15. 22.15.
    C. Du Mouza, P. Rigaux: Mobility patterns, GeoInformatica 9(4), 297–319 (2005)CrossRefGoogle Scholar
  16. 22.16.
    N.A. Lorentzos: A formal extension of the relational model for the representation and manipulation of generic intervals. Ph.D. Thesis (University of London, Birbeck College 1988)Google Scholar
  17. 22.17.
    G. Langran: Time in geographic information systems. Ph.D. Thesis (University of Washington, Washington 1999)Google Scholar
  18. 22.18.
    S. Šaltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez: Indexing the positions of continuously moving objects, Proc. ACM SIGMOD Int. Conf. Manag. Data (2000) pp. 331–342Google Scholar
  19. 22.19.
    M. Hadjieleftheriou, G. Kollios, V.J. Tsotras, D. Gunopulos: Indexing spatio-temporal archives, VLDB Journal 15(2), 143–164 (2006)CrossRefGoogle Scholar
  20. 22.20.
    J.A. Dykes, D.M. Mountain: Seeking structure in records of spatio-temporal behavior: Visualization issues, efforts and application, Comput. Stat. Data Anal. 43(4), 581–603 (2003)CrossRefGoogle Scholar
  21. 22.21.
    M. Buchin, A. Driemel, M.J. van Kreveld, V. Sacristan: An algorithmic framework for segmenting trajectories based on spatio-temporal criteria, Proc. 18th ACM SIGSPATIAL Int. Symp. Adv. Geogr. Inf. Syst. (2010) pp. 202–211Google Scholar
  22. 22.22.
    A. Anagnostopoulos, M. Vlachos, M. Hadjieleftheriou, E. Keogh, P.S. Yu: Global distance-based segmentation of trajectories, Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2006) pp. 34–43Google Scholar
  23. 22.23.
    S. Rasetic, J. Sander, J. Elding, M.A. Nascimento: A trajectory splitting model for efficient spatio-temporal indexing, Proc. 31st Int. Conf. Very Large Data Bases (2005) pp. 934–945Google Scholar
  24. 22.24.
    H. Yoon, C. Shahabi: Robust time-referenced segmentation of moving object trajectories, Proc. IEEE Int. Conf. Data Min. (2008) pp. 1121–1126Google Scholar
  25. 22.25.
    D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, Can. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  26. 22.26.
    H. Cao, O. Wolfson, G. Trajcevski: Spatio-temporal data reduction with deterministic error bounds, VLDB Journal 15(3), 211–228 (2006)CrossRefGoogle Scholar
  27. 22.27.
    J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, T. Wolle: Compressing spatiotemporal trajectories, Comput. Geom. Theory Appl. 42, 825–841 (2009)CrossRefGoogle Scholar
  28. 22.28.
    N. Meratnia, R.A. de By: Spatiotemporal compression techniques for moving point objects, Proc. 9th Int. Conf. Ext. Database Technol. (2004) pp. 765–782Google Scholar
  29. 22.29.
    R. Agrawal, C. Faloutsos, A.N. Swami: Efficient similarity search in sequence databases, Proc. 4th Int. Conf. Found. Data Org. Algorithms (1993) pp. 69–84Google Scholar
  30. 22.30.
    K. Chu, M. Wong: Fast time-series searching with scaling and shifting, Proc. 18th ACM Symp. Princ. Database Syst. (1999) pp. 237–248Google Scholar
  31. 22.31.
    D. Rafiei, A.O. Mendelzon: Querying time series data based on similarity, IEEE Trans. Knowl. Data Eng. 12, 675–693 (2000)CrossRefGoogle Scholar
  32. 22.32.
    B.-K. Yi, C. Faloutsos: Fast time sequence indexing for arbitrary lp norms, Proc. 26th Int. Conf. Very Large Data Bases (2000) pp. 385–394Google Scholar
  33. 22.33.
    D.J. Berndt, J. Clifford: Using dynamic time warping to find patterns in time series, Proc. Knowl. Discov. Database Workshop (1994) pp. 359–370Google Scholar
  34. 22.34.
    E. Keogh, C.A. Ratanamahatana: Exact indexing of dynamic time warping, Knowl. Inf. Syst. 7, 358–386 (2005)CrossRefGoogle Scholar
  35. 22.35.
    E.J. Keogh, M.J. Pazzani: Scaling up dynamic time warping for datamining applications, Proc. 6th ACM Int. Conf. Knowl. Discov. Data Min. (2000) pp. 285–289Google Scholar
  36. 22.36.
    Y. Sakurai, M. Yoshikawa, C. Faloutsos: Ftw: Fast similarity search under the time warping distance, Proc. 24th ACM Symp. Princ. Database Syst. (2005) pp. 326–337Google Scholar
  37. 22.37.
    B.-K. Yi, H.V. Jagadish, C. Faloutsos: Efficient retrieval of similar time sequences under time warping, Proc. 14th Int. Conf. Data Eng. (1998) pp. 201–208Google Scholar
  38. 22.38.
    R. Agrawal, K.-I. Lin, H.S. Sawhney, K. Shim: Fast similarity search in the presence of noise, scaling, and translation in time-series databases, Proc. 21th Int. Conf. Very Large Data Bases (1995) pp. 490–501Google Scholar
  39. 22.39.
    G. Das, D. Gunopulos, H. Mannila: Finding similar time series, Proc. 1st Eur. Symp. Princ. Data Min. Knowl. Discov. (1997) pp. 88–100Google Scholar
  40. 22.40.
    M. Vlachos, D. Gunopoulos, G. Kollios: Discovering similar multidimensional trajectories, Proc. 18th Int. Conf. Data Eng. (2002) pp. 673–682Google Scholar
  41. 22.41.
    K. Buchin, M. Buchin, M. van Kreveld, J. Luo: Finding long and similar parts of trajectories, Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst. (2009) pp. 296–305Google Scholar
  42. 22.42.
    G. Sinha, D.M. Mark: Measuring similarity between geospatial lifelines in studies of environmental health, J. Geogr. Syst. 7(1), 115–136 (2005)CrossRefGoogle Scholar
  43. 22.43.
    G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia, D. Vaccaro: Dynamics-aware similarity of moving objects trajectories, Proc. 15th Annu. ACM Int. Symp. Adv. Geogr. Inf. Syst. (2007) pp. 11–1–11–8Google Scholar
  44. 22.44.
    M. Nanni, D. Pedreschi: Time-focused clustering of trajectories of moving objects, J. Intell. Inf. Syst. 27, 267–289 (2006)CrossRefGoogle Scholar
  45. 22.45.
    M. van Kreveld, J. Luo: The definition and computation of trajectory and subtrajectory similarity, Proc. 15th Annu. ACM Int. Symp. Adv. Geogr. Inf. Syst. (2007) pp. 44–1–44–4Google Scholar
  46. 22.46.
    M. Fréchet: Sur quelques points du calcul fonctionnel, Rend. Circ. Math. Palermo 22, 1–74 (1906)CrossRefGoogle Scholar
  47. 22.47.
    H. Alt, M. Godau: Computing the Fréchet distance between two polygonal curves, Int. J. Comput. Geom. Appl. 5, 75–91 (1995)CrossRefGoogle Scholar
  48. 22.48.
    K. Buchin, M. Buchin, J. Gudmundsson: Constrained free space diagrams: A tool for trajectory analysis, Int. J. Geogr. Inf. Sci. 24(7), 1101–1125 (2010)CrossRefGoogle Scholar
  49. 22.49.
    A. Maheshwari, J.-R. Sack, K. Shahbaz, H. Zarrabi-Zadeh: Fréchet distance with speed limits, Comput. Geom. Theory Appl. 44(2), 110–120 (2011)CrossRefGoogle Scholar
  50. 22.50.
    K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, J. Luo: Detecting commuting patterns by clustering subtrajectories, Int. J. Comput. Geom. Appl. 21(3), 253–282 (2011)CrossRefGoogle Scholar
  51. 22.51.
    Z. Zhang, K. Huang, T. Tan: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes, Proc. 18th Int. Conf. Pattern Recognit. (2006) pp. 1135–1138Google Scholar
  52. 22.52.
    B. Djordjevic, J. Gudmundsson, A. Pham, T. Wolle: Detecting regular visit patterns, Proc. 16th Annu. Eur. Symp. Algorithms (2008) pp. 344–355Google Scholar
  53. 22.53.
    N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, D. Cheung: Mining, indexing, and querying historical spatiotemporal data, Proc. 10th ACM Int. Conf. Knowl. Discov. Data Min., ACM (2004) pp. 236–245Google Scholar
  54. 22.54.
    F. Verhein, S. Chawla: Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases, Proc. 11th Int. Conf. Database Syst. Adv. Appl., Vol. 3882 (Springer, Berlin Heidelberg 2006) pp. 187–201Google Scholar
  55. 22.55.
    P. Laube, M. van Kreveld, S. Imfeld: Finding REMO – Detecting relative motion patterns in geospatial lifelines. In: Developments in Spatial Data Handling, ed. by P.F. Fisher (Springer, Berlin Heidelberg 2004) pp. 201–214Google Scholar
  56. 22.56.
    M. Benkert, J. Gudmundsson, F. Hübner, T. Wolle: Reporting flock patterns, Comput. Geom. Theory Appl. 41(3), 111–125 (2008)CrossRefGoogle Scholar
  57. 22.57.
    J. Gudmundsson, M. van Kreveld: Computing longest duration flocks in trajectory data, Proc. 14th Annu. ACM Symp. Adv. Geogr. Inf. Syst. ACM (2006) pp. 35–42Google Scholar
  58. 22.58.
    P. Kalnis, N. Mamoulis, S. Bakiras: On discovering moving clusters in spatio-temporal data, Proc. 9th Int. Symp. Adv. Spat. Tempor. Databases, Vol. 3633, ed. by C.B. Medeiros, M.J. Egenhofer, E. Bertino (Springer, Berlin Heidelberg 2005) pp. 364–381CrossRefGoogle Scholar
  59. 22.59.
    M. Andersson, J. Gudmundsson, P. Laube, T. Wolle: Reporting leadership patterns among trajectories, Proc. 22nd ACM Symp. Appl. Comput. ACM (2007)Google Scholar
  60. 22.60.
    M. Benkert, B. Djordjevic, J. Gudmundsson, T. Wolle: Finding popular places, Int. J. Comput. Geom. Appl. 20(1), 19–42 (2010)CrossRefGoogle Scholar
  61. 22.61.
    H. Jeung, H.T. Shen, X. Zhou: Convoy queries in spatio-temporal databases, Proc. 24th Int. Conf. Data Eng. (2008) pp. 1457–1459Google Scholar
  62. 22.62.
    H. Jeung, M.L. Yiu, X. Zhou, C.S. Jensen, H.T. Shen: Discovery of convoys in trajectory databases, Proc. VLDB Endow. 1, 1068–1080 (2008)Google Scholar
  63. 22.63.
    D.R. Brillinger, H.K. Preisler, A.A. Ager, J.G. Kie: An exploratory data analysis (EDA) of the paths of moving animals, J. Stat. Plan. Inference 122(2), 43–63 (2004)CrossRefGoogle Scholar
  64. 22.64.
    N.V. Andrienko, G.L. Andrienko: Interactive maps for visual data exploration, Int. J. Geogr. Inf. Sci. 13(4), 355–374 (2003)CrossRefGoogle Scholar
  65. 22.65.
    G. Andrienko, N. Andrienko, U. Demsar, D. Dransch, J. Dykes, S.I. Fabrikant, M. Jern, M.J. Kraak, H. Schumann, C. Tominski.: Space, time and visual analytics, Int. J. Geogr. Inf. Sci. 24(10), 1577–1600 (2010)CrossRefGoogle Scholar
  66. 22.66.
    N. Andrienko, G. Andrienko: Designing visual analytics methods for massive collections of movement data, Cartographica 42(2), 117–138 (2007)CrossRefGoogle Scholar
  67. 22.67.
    J.J. Thomas, K.A. Cook: A visual analytics agenda, IEEE Comput. Graph. Appl. 26(1), 10–13 (2006)CrossRefGoogle Scholar
  68. 22.68.
    S. Rinzivillo, D. Pedreschi, M. Nanni, F. Giannotti, N. Andrienko, G. Andrienko: Visually driven analysis of movement data by progressive clustering, Inf. Vis. 7(3/4), 225–239 (2008)CrossRefGoogle Scholar
  69. 22.69.
    R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse: A movement ecology paradigm for unifying organismal movement research, Proc. Natl. Acad. Sci. USA 105(49), 19052–19059 (2008)CrossRefGoogle Scholar
  70. 22.70.
    B. Dumont, A. Boissy, C. Achard, A.M. Sibbald, H.W. Erhard: Consistency of animal order in spontaneous group movements allows the measurement of leadership in a group of grazing heifers, Appl. Anim. Behav. Sci. 95(1/2), 55–66 (2005)CrossRefGoogle Scholar
  71. 22.71.
    U. Wilensky: Netlogo ocking model, http://ccl.northwestern.edu/netlogo/models/Flocking (last accessed January 10, 2011)
  72. 22.72.
    A.P. Sistla, O. Wolfson, S. Chamberlain, S. Dao: Modeling and querying moving objects, Proc. 13th Int. Conf. Data Eng. (IEEE Computer Society, 1997) pp. 422–432Google Scholar
  73. 22.73.
    G. Geers, M. Sester, S. Winter, O. E.Wolfson: 10121 report – Towards a computational transportation science. In: Computational Transportation Science, Vol. 10121, ed. by G. Geers, M. Sester, S. Winter, O.E. Wolfson (Leibniz-Zentrum für Informatik, Dagstuhl 2010)Google Scholar
  74. 22.74.
    R.T. Ng: Detecting outliers from large datasets. In: Geographic data mining and knowledge discovery, ed. by H.J. Miller, J. Han (Taylor Francis, London 2001) pp. 218–235CrossRefGoogle Scholar
  75. 22.75.
    M. Batty, J. Desyllas, E. Duxbury: The discrete dynamics of small-scale spatial events: Agent-based models of mobility in carnivals and street parades, Int. J. Geogr. Inf. Sci. 17(7), 673–697 (2003)CrossRefGoogle Scholar
  76. 22.76.
    J.S. Larson, E.T. Bradlow, P.S. Fader: An exploratory look at supermarket shopping paths, Int. J. Res. Mark. 22, 395–414 (2005)CrossRefGoogle Scholar
  77. 22.77.
    T.A. Shimp: Advertising, Promotion, and Other Aspects of Integrated Marketing Communications (South-Western Cengage, Florence 2008)Google Scholar
  78. 22.78.
    T. Taki, J.-I. Hasegawa: Visualization of dominant region in team games and its application to teamwork analysis, Proc. Int. Conf. Comput. Graph (2000)Google Scholar
  79. 22.79.
    T. Taki, J.-I. Hasegawa: A feature for group behavior analysis in team sports and its application, Trans. Inst. Electron. Inf. Commun. Eng., J81-D-II(8), 1802–1811 (1998)Google Scholar
  80. 22.80.
    A. Fujimura, K. Sugihara: Geometric analysis and quantitative evaluation of sport teamwork, Syst. Comput. Jpn. 36, 49–58 (2005)CrossRefGoogle Scholar
  81. 22.81.
    C.-H. Kang, J.-R. Hwang, K.-J. Li: Trajectory analysis for soccer players, Proc. 6th IEEE Int. Conf. Data Min. Workshop (2006) pp. 377–381Google Scholar
  82. 22.82.
    D. Memmert, J. Perl: Game creativity analysis by means of neural networks, J. Sport Sci. 27, 139–149 (2009)CrossRefGoogle Scholar
  83. 22.83.
    A. Grunz, D. Memmert, J. Perl: Analysis and simulation of actions in games by means of special self-organizing maps, Int. J. Comput. Sci. Sport 8, 22–36 (2009)Google Scholar
  84. 22.84.
    J. Gudmundsson, T. Wolle: Towards automated football analysis: Algorithms and data structures, Proc. 10th Australas. Conf. Math. Comput. Sport (2010)Google Scholar
  85. 22.85.
    P. Laube, S. Imfeld, R. Weibel: Discovering relative motion patterns in groups of moving point objects, Int. J. Geogr. Inf. Sci. 19(6), 639–668 (2005)CrossRefGoogle Scholar
  86. 22.86.
    S. Nittel, A. Stefanidis, I. Cruz, M.J. Egenhofer, D. Goldin, A. Howard, A. Labrinidis, S. Madden, A. Voisard, M. Worboys: Report from the first workshop on geo sensor networks, ACM SIGMOD Rec. 33(1), 141–144 (2004)CrossRefGoogle Scholar
  87. 22.87.
    N. Lynch: Distributed Algorithms (Morgan Kaufmann, San Mateo 1996)Google Scholar
  88. 22.88.
    M. Duckham, R. Bennett: Ambient spatial intelligence. In: Behavior Monitoring and Interpretation – BMI – Smart Environments, Vol. 3, ed. by B. Gottfried, H. Aghajan (IOS, Amsterdam 2009) pp. 319–335Google Scholar
  89. 22.89.
    P. Laube, M. Duckham, T. Wolle: Decentralized movement pattern detection amongst mobile geosensor nodes. In: GIScience 2008, Vol. 5266, ed. by T.J. Cova, K. Beard, M.F. Goodchild, A.U. Frank (Springer, Berlin Heidelberg 2008) pp. 199–216Google Scholar
  90. 22.90.
    J.E. Dobson, P.F. Fisher: Geoslavery, IEEE Technol. Soc. Mag. 22(1), 47–52 (2003)CrossRefGoogle Scholar
  91. 22.91.
    C. Bettini, X. Wang, S. Jajodia: Protecting privacy against location-based personal identification. In: Secure Data Management, Vol. 3674, ed. by W. Jonker, M. Petkovic (Springer, Heidelberg 2005) pp. 185–199CrossRefGoogle Scholar
  92. 22.92.
    M. Duckham, L. Kulik: Location privacy and location-aware computing. In: Dynamic and Mobile GIS, ed. by J. Drummond, R. Billen, D. Forrest, E. Joao (CRC, Boca Raton 2006)Google Scholar
  93. 22.93.
    US Department of Justice, Office of Information and Privacy: Overview of the privacy act of 1974 (2004)Google Scholar
  94. 22.94.
    E. Kaasinen: User needs for location-aware mobile services, Pers. Ubiquitous Comput. 7(1), 70–79 (2003)CrossRefGoogle Scholar
  95. 22.95.
    H. Kido, Y. Yanagisawa, T. Satoh: An anonymous communication technique using dummies for location-based services, Int. Conf. Pervasive Serv. (ICPS ʼ05) (2005) pp. 88–97Google Scholar
  96. 22.96.
    M. Duckham, L. Kulik: Simulation of obfuscation and negotiation for location privacy, Lect. Notes Comput. Sci. 3693, 31–48 (2005)CrossRefGoogle Scholar
  97. 22.97.
    M. Duckham, L. Kulik: A formal model of obfuscation and negotiation for location privacy. In: Pervasive Computing, Vol. 3468, ed. by H.W. Gellersen, R. Want, A. Schmidt (Springer, Berlin 2005) pp. 152–170CrossRefGoogle Scholar
  98. 22.98.
    F. Giannotti, D. Pedreschi: Mobility, data mining and privacy: A vision of convergence. In: Mobility, Data Mining and Privacy, ed. by F. Giannotti, D. Pedreschi (Springer, Berlin Heidelberg 2008) pp. 1–11CrossRefGoogle Scholar
  99. 22.99.
    A. Uteck: Ubiquitous computing and spatial privacy, anonymity, privacy and identity in a networked society. In: Lessons from the Identity Trail, ed. by I. Kerr, V. Steeves, C. Lucock (Oxford Univ Press, New York 2009) pp. 83–102Google Scholar
  100. 22.100.
    S. Nouwt: Reasonable expectations of geo-privacy?, SCRIPTed 5(2), 375–403 (2008)CrossRefGoogle Scholar
  101. 22.101.
    D.J. Peuquet: Itʼs about time: A conceptual framework for the representation of temporal dynamics in geographic information systems, Ann. Assoc. Am. Geogr. 83(3), 441–461 (1994)CrossRefGoogle Scholar
  102. 22.102.
    N.R. Chrisman: Beyond the snapshot: Changing the approach to change, error, and process. In: Spatial and Temporal Reasoning in Geographic Information Systems, ed. by M.J. Egenhofer, R.G. Golledge (Oxford Univ. Press, Oxford 1998) pp. 85–93Google Scholar
  103. 22.103.
    S. Dodge, R. Weibel, A.-K. Lautenschutz: Towards a taxonomy of movement patterns, Inf. Vis. 7(3/4), 240–252 (2008)CrossRefGoogle Scholar
  104. 22.104.
    Z. Wood, A. Galton: Classifying collective motion. In: Behaviour Monitoring and Interpretation – BMI – Smart Environments, Vol. 3, ed. by B. Gottfried, H. Aghajan (IOS, Amsterdam 2009) pp. 129–155Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia
  2. 2.Department of GeographyUniversity of ZurichZurichSwitzerland
  3. 3.Arclight SydneySydneyAustralia

Personalised recommendations