A Research Agenda for Conceptual Schema-Centric Development

  • Antoni Olivé
  • Jordi Cabot


Conceptual schema-centric development (CSCD) is a research goal that reformulates the historical aim of automating information systems development. In CSCD, conceptual schemas would be explicit, executable in the production environment and the basis for the system’s evolution. To achieve the CSCD goal, several research problems must be solved. In this paper we identify and comment on sixteen problems that should be included in a research agenda for CSCD.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model automatic clustering. Data & Knowledge Engineering, 20, 1996, pp. 87–117CrossRefGoogle Scholar
  2. [2]
    Basili, V., Briand, L.C., Melo, W.: How reuse influences productivity in object-oriented systems. Communications of the ACM 39(10), 1996, pp. 104–116CrossRefGoogle Scholar
  3. [3]
    Boman, M., Bubenko, J.A. jr., Johannesson, P., Wangler, B.: Conceptual Modelling. Prentice Hall, 1997, p. 269Google Scholar
  4. [4]
    Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. In Proc. CIDR 2003, pp. 209–220Google Scholar
  5. [5]
    Banerjee, J., Kim, W., Kim, H-J., Korth, H.F.: Semantics and Implementation of Schema Evolution in Object-Oriented Databases. In Proc. ACM SIGMOD 1987, pp. 311–322Google Scholar
  6. [6]
    Batini, C., Lenzerini, M., Navathe S.B.: A Comparative Analysis of Methodologies for Database Schema Integration. ACM Comput. Surv. 18(4), 1986, pp. 323–364CrossRefGoogle Scholar
  7. [7]
    Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure specifications. IEEE Transactions on Software Engineering 21, 1995, pp. 785–798CrossRefGoogle Scholar
  8. [8] (Eds.): A Brief History of the Business Rule Approach. Business Rules Journal, 6(1), January 2005Google Scholar
  9. [9]
    Brinkkemper, S., Lindencrona, E., Sølvberg, A. (Eds.): Information Systems Engineering. State of the Art and Research Themes, Springer, 2000Google Scholar
  10. [10]
    Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual Data Modeling. In Chomicki, J., Saake, G. (Eds.): Logics for Databases and Information Systems. Kluwer, 1998, pp. 229–263Google Scholar
  11. [11]
    Castano, S., de Antonellis, V., Fugini, M.G., Pernici, B.: Conceptual Schema Analysis: Techniques and Applications. ACM TODS, 23(3), 1998, pp. 286–333CrossRefGoogle Scholar
  12. [12]
    Ceri, S.; Fraternalli, P.; Paraboschi, S.; Tanca, L. “Automatic Generation of Production Rules for Integrity Maintenance”. ACM TODS, 19(3), 1994, pp. 367–422CrossRefGoogle Scholar
  13. [13]
    Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In Proc. CAiSE 2006, LNCS 4001, pp. 81–95Google Scholar
  14. [14]
    Chen, P., Thalheim, B., Wong, L.Y.: Future Directions of Conceptual Modeling. In Proc. ER 1997, LNCS 1565, pp. 287–301Google Scholar
  15. [15]
    Davis, K.H., Aiken, P.H.: Data Reverse Engineering: A Historical Survey. In Proc. Working Conference on Reverse Engineering, 2000, pp. 70–78Google Scholar
  16. [16]
    DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-the-Small. IEEE Trans. Software Eng. 2(2), 1976, pp. 80–86MathSciNetGoogle Scholar
  17. [17]
    Egyed, A. Instant consistency checking for the UML. In Proc. ICSE 2006, pp. 381–390Google Scholar
  18. [18]
    Eshuis, R., Jansen, D.N., Wieringa, R.: Requirements-Level Semantics and Model Checking of Object-Oriented Statecharts. Requirements Engineering 7(4), 2002, pp. 243–263CrossRefGoogle Scholar
  19. [19]
    Fowler, M.: Refactoring: Improving the design of existing code. Addison-Wesley, 1998, p. 464Google Scholar
  20. [20]
    Gogolla, M., Bohling, J., Richters, M.: Validation of UML and OCL Models by Automatic Snapshot Generation. In Proc. UML 2003, LNCS 2863, pp. 265–279Google Scholar
  21. [21]
    Gómez, C., Olivé, A.: Evolving Derived Entity Types in Conceptual Schemas in the UML. In Proc. OOIS 2003, LNCS 2817, pp. 33–45Google Scholar
  22. [22]
    Gupta, A., Mumick, I. S.: Materialized Views. Techniques, Implementations and Applications. The MIT Press, 1999Google Scholar
  23. [23]
    Gupta, H., Mumick, I.S.: Selection of Views to Materialize in a Data Warehouse. IEEE Trans on Knowledge and data engineering, 17(1), 2005, pp. 24–43CrossRefGoogle Scholar
  24. [24]
    Gupta, A., Mumick, I.S., Ross, K.A.: Adapting Materialized Views after Redefinitions. In Proc. ACM SIGMOD 1995, pp. 211–222Google Scholar
  25. [25]
    Harel, D.: Biting the Silver Bullet. Toward a Brighter Future for System Development. Computer, January 1992, pp. 8–20Google Scholar
  26. [26]
    Hick, J-M., Hainaut, J-L.: Strategy for Database Application Evolution: The DB-MAIN Approach. In Proc. ER 2003, LNCS 2813, pp. 291–306Google Scholar
  27. [27]
    ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and the Information Base, J.J. Van Griethuysen (Ed.), March 1982Google Scholar
  28. [28]
    Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling. IEEE Software, March 1994, pp. 42–49Google Scholar
  29. [29]
    Mays, R.G. “Forging a silver bullet from the essence of software”. IBM Systems Journal, 33(1), 1994, pp. 20–45MathSciNetCrossRefGoogle Scholar
  30. [30]
    Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven Architecture. Addison-Wesley, 2002, p. 368Google Scholar
  31. [31]
    Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Software Eng. 30(2), 2004, pp. 126–139CrossRefGoogle Scholar
  32. [32]
    Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the Quality of Process Models: Empirical Testing of a Quality Framework. In Proc. ER 2002, LNCS 2503, pp. 214–231Google Scholar
  33. [33]
    Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of information models: empirical testing of a conceptual model quality framework. In Proc. ICSE 2003, pp. 295–307Google Scholar
  34. [34]
    Mylopoulos, J.: The Role of Knowledge Representation in the Development of Specifications. In Proc IFIP 1986, pp. 317–319Google Scholar
  35. [35]
    Mylopoulos, J.: Information Modeling in the Time of the Revolution. Information Systems 23(3/4), 1998, pp. 127–155CrossRefGoogle Scholar
  36. [36]
    Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages. In Proc. CAiSE 2003, LNCS 2681, pp. 404–420Google Scholar
  37. [37]
    Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information Systems Research. In Proc. CAiSE 2005. LNCS 3520, pp. 1–15Google Scholar
  38. [38]
    Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Communications of the ACM 41(5), 1998, pp. 166–178CrossRefGoogle Scholar
  39. [39]
    Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In Proc VLDB 2003, pp. 826–873Google Scholar
  40. [40]
    Rahm, E., Bernstein P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 2001, pp. 334–350zbMATHCrossRefGoogle Scholar
  41. [41]
    Rich, C., Waters, R.C.: Automatic Programming: Myths and Prospects. Computer, August 1988, pp. 40–51Google Scholar
  42. [42]
    Ross, R.G. (Ed.): The Business Rules Manifesto. Business Rules Group. Version 2.0, November 2003Google Scholar
  43. [43]
    Schumann, J. M.: Automated Theorem Proving in Software Engineering, Springer, 2001, p. 228Google Scholar
  44. [44]
    Schewe, K-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta Informática 36, 1999, pp. 97–141zbMATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    Shaw, M.: Software Engineering Education: A Roadmap. In Future of Software Engineering, Proc ICSE 2000, pp. 371–380Google Scholar
  46. [46]
    Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model, method of creation and experimental evaluation. Requirements Eng., 2004, 9, pp. 217–228CrossRefGoogle Scholar
  47. [47]
    Sølvberg, A.: Co-operative Concept Modeling. In Lindencrona, E., Sølvberg, A. (Eds.): State of the Art and Research Themes, Springer, 2000 [9], pp. 305–326Google Scholar
  48. [48]
    Sowa, J.F.: Knowledge Representation. Logical, Philosophical and Computational Foundations. Brooks/Cole, 2000, p. 594Google Scholar
  49. [49]
    Stumptner, M., Schrefl, M., Grossmann, G.: On the road to behavior-based integration. In Proc. APCCM 2004, pp. 15–22Google Scholar
  50. [50]
    Steimann, F., Kühne, T.: Coding for the Code. ACM Queue, 3(10), 2006, pp. 45–51Google Scholar
  51. [51]
    Teichroew, D., Sayani, H.: Automation of System Building. Datamation, 17(16), 1971, pp. 25–30Google Scholar
  52. [52]
    Teniente, E., Urpí, T.: On the abductive or deductive nature of database schema validation and update processing problems. Theory and Practice of Logic Programming 3(3), 2003, pp. 287–327zbMATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented Code. Springer, 2005, p. 210Google Scholar
  54. [54]
    Türker, C., Gertz, M.: Semantic integrity support in SQL: 1999 and commercial (object-)relational database management systems. VLDB Journal, 10, 2001, pp. 241–269zbMATHCrossRefGoogle Scholar
  55. [55]
    Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual Modeling — A Research Agenda. Information Systems Research, 13(4), 2002, pp. 363–376CrossRefGoogle Scholar
  56. [56]
    Wieringa, R.: A survey of structured and object-oriented software specification methods and techniques. ACM Computing Surveys 30, 1998, pp. 459–527CrossRefGoogle Scholar
  57. [57]
    Zhang, Y.: Test-Driven Modeling for Model-Driven Development. IEEE Software, September/October 2004, pp. 80–86Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antoni Olivé
    • 1
  • Jordi Cabot
    • 2
  1. 1.Universitat Politècnica de CatalunyaSpain
  2. 2.Universitat Oberta de CatalunyaSpain

Personalised recommendations