Semantic Process Retrieval with iSPARQL

  • Christoph Kiefer
  • Abraham Bernstein
  • Hong Joo Lee
  • Mark Klein
  • Markus Stocker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4519)

Abstract

The vision of semantic business processes is to enable the integration and inter-operability of business processes across organizational boundaries. Since different organizations model their processes differently, the discovery and retrieval of similar semantic business processes is necessary in order to foster inter-organizational collaborations. This paper presents our approach of using iSPARQL – our imprecise query engine based on iSPARQL – to query the OWL MIT Process Handbook – a large collection of over 5000 semantic business processes. We particularly show how easy it is to use iSPARQL to perform the presented process retrieval task. Furthermore, since choosing the best performing similarity strategy is a non-trivial, data-, and context-dependent task, we evaluate the performance of three simple and two human-engineered similarity strategies. In addition, we conduct machine learning experiments to learn similarity measures showing that complementary information contained in the different notions of similarity strategies provide a very high retrieval accuracy. Our preliminary results indicate that iSPARQL is indeed useful for extending the reach of queries and that it, therefore, is an enabler for inter- and intra-organizational collaborations.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  2. 2.
    Bernstein, A., Grosof, B., Kifer, M.: Beyond Monotonic Inheritance: Towards Non-Monotonic Semantic Web Process Ontologies. In: W3C Ws. On Frameworks for Semantics in Web Services (2005)Google Scholar
  3. 3.
    Bernstein, A., Kiefer, C.: Imprecise RDQL: Towards Generic Retrieval in Ontologies Using Similarity Joins. In: Proc. of the 2006 ACM Symp. on Applied Computing (SAC ’06), Dijon, France, pp. 1684–1689. ACM Press, New York (2006)CrossRefGoogle Scholar
  4. 4.
    Bernstein, A., Klein, M.: Towards High-Precision Service Retrieval. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 84–101. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A., Studer, R.: Semantic Alignment of Business Processes. In: Proc. of the 8th Int. Conf. on Enterprise Information Systems (ICEIS ’06), Paphos, Cyprus, pp. 191–196 (2006)Google Scholar
  6. 6.
    Cohen, W.W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: Proc. of the IIWeb Ws, IJCAI ’03 (2003)Google Scholar
  7. 7.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic Business Process Models. In: Proc. of the 4th Asia-Pacific Conf. on Conceptual Modelling (APCCM ’07), Ballarat, Victoria, Australia, to appear (2007)Google Scholar
  8. 8.
    Geng, L., Hamilton, H.J.: Interestingness Measures for Data Mining: A Survey. ACM Comp. Surv. 38(3) (2006)Google Scholar
  9. 9.
    Gentner, D., Medina, J.: Similarity and the Development of Rules. Cognition 65, 263–297 (1998)CrossRefGoogle Scholar
  10. 10.
    Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with OWLS-MX. In: Proc. of the 5th Int. Joint Conf. on Autonomous Agents and Multiagent Systems (AAMAS ’06), Hakodate, Japan, pp. 915–922. ACM, New York (2006)CrossRefGoogle Scholar
  11. 11.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  12. 12.
    Malone, T.W., Crowston, K., Herman, G.A.: Organizing Business Knowledge: The MIT Process Handbook. MIT Press, Cambridge (2003)Google Scholar
  13. 13.
    Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J., Osborn, C.S., Bernstein, A., Herman, G., Klein, M., O’Donnell, E.: Tools for Inventing Organizations: Towards a Handbook of Organizational Processes. Management Science 45(3), 425–443 (1999)CrossRefGoogle Scholar
  14. 14.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical report, W3C (2006)Google Scholar
  15. 15.
    Wolpert, D., Mcready, W.: No Free Lunch Theorems for Optimization. IEEE TOEC 1(1), 67–82 (1997)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Kiefer
    • 1
  • Abraham Bernstein
    • 1
  • Hong Joo Lee
    • 2
  • Mark Klein
    • 2
  • Markus Stocker
    • 1
  1. 1.Department of Informatics, University of ZurichSwitzerland
  2. 2.Center for Collective Intelligence, Massachusetts Institute of TechnologyUSA

Personalised recommendations