Advertisement

Learning Disjointness

  • Johanna Völker
  • Denny Vrandečić
  • York Sure
  • Andreas Hotho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4519)

Abstract

An increasing number of applications benefits from light-weight ontologies, or to put it differently “a little semantics goes a long way”. However, our experience indicates that more expressiveness can offer significant advantages. Introducing disjointness axioms, for instance, greatly facilitates consistency checking and the automatic evaluation of ontologies. In an extensive user study we discovered that proper modeling of disjointness is a difficult and very time-consuming task. We therefore developed an approach to automatically enrich learned or manually engineered ontologies with disjointness axioms. This approach relies on several methods for obtaining syntactic and semantic evidence from different sources which we believe to provide a solid base for learning disjointness. After thoroughly evaluating the implementation of our approach we think that in future ontology engineering environments the automatic discovery of disjointness axioms may help to increase the richness, quality and usefulness of any given ontology.

Keywords

Noun Phrase Majority Vote Description Logic Human Annotator Context Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bisson, G., Nedellec, C., Canamero, L.: Designing clustering methods for ontology building - The Mo’K workbench. In: Proc. of the ECAI Ontology Learning Workshop, pp. 13–19 (2000)Google Scholar
  2. 2.
    Paslaru Bontas Simperl, E., Tempich, C., Sure, Y.: ONTOCOM: A cost estimation model for ontology engineering. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 625–639. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Buitelaar, P., Olejnik, D., Sintek, M.: OntoLT: A protégé plug-in for ontology extraction from text. In: Proc. of the 2nd Int. Semantic Web Conference, ISWC’03 (2003)Google Scholar
  4. 4.
    Cimiano, P., Völker, J.: Text2onto – a framework for ontology learning and data-driven change discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cimiano, P.: Towards large-scale, open-domain and ontology-based named entity classification. In: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N. (eds.) Proc. of the International Conference on Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria, September 2005, pp. 166–172. INCOMA Ltd. (2005)Google Scholar
  6. 6.
    Fellbaum, C.: WordNet, an electronic lexical database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  7. 7.
    Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: ICML, pp. 124–133 (1999), http://www.lsmason.com/papers/ICML99-AlternatingTrees.pdf
  8. 8.
    Guarino, N., Welty, C.A.: A formal ontology of properties. In: Knowledge Acquisition, Modeling and Management, pp. 97–112 (2000), citeseer.nj.nec.com/guarino00formal.html
  9. 9.
    Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and inconsistency. In: Proc. of the Workshop on Uncertainty Reasoning for the Semantic Web (URSW), pp. 45–55 (2005)Google Scholar
  10. 10.
    Harris, Z.: Distributional structure. In: Katz, J. (ed.) The Philosophy of Linguistics, pp. 26–47. Oxford University Press, New York (1985)Google Scholar
  11. 11.
    Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: Fundamental considerations of role concepts for ontology evaluation. In: Proc. of the Workshop EON – Evaluation of Ontologies for the Web (2006)Google Scholar
  12. 12.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE IS 16(2) (2001)Google Scholar
  13. 13.
    Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F.: Extending and enriching WordNet with OntoLearn. In: Proc. of the GWC 2004, pp. 279–284 (2004)Google Scholar
  14. 14.
    Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  15. 15.
    Rector, A.L., Drummond, N., Horridge, M., Rogers, J.D., Knublauch, H., Stevens, R., Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL: Common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Rose, T., Stevenson, M., Whitehead, M.: The reuters corpus volume 1-from yesterday’s news to tomorrow’s language resources. In: Proc. of the Third International Conference on Language Resources and Evaluation, pp. 29–31 (2002)Google Scholar
  17. 17.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Schutz, A., Buitelaar, P.: RelExt: A tool for relation extraction from text in ontology extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Terziev, I., Kiryakov, A., Manov, D.: Base upper-level ontology (BULO) guidance. SEKT deliverable 1.8.1, Ontotext Lab, Sirma AI EAD, Ltd. (2004)Google Scholar
  20. 20.
    Völker, J., Vrandečić, D., Sure, Y.: Automatic evaluation of ontologies (AEON). In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 716–731. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Vrandečić, D., Pinto, H.S., Sure, Y., Tempich, C.: The DILIGENT knowledge processes. Journal of Knowledge Management 9(5), 85–96 (2005)CrossRefGoogle Scholar
  22. 22.
    Wang, T.D.: Gauging ontologies and schemas by numbers. In: Proc. of the Workshop EON – Evaluation of Ontologies for the Web (2006)Google Scholar
  23. 23.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Sys., Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  24. 24.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd. Annual Meeting of the Ass. for Computational Linguistics, New Mexico, pp. 133–138 (1994), citeseer.ist.psu.edu/wu94verb.html

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Johanna Völker
    • 1
  • Denny Vrandečić
    • 1
  • York Sure
    • 1
  • Andreas Hotho
    • 2
  1. 1.Institute AIFB, University of KarlsruheGermany
  2. 2.University of KasselGermany

Personalised recommendations