Multi-state Directed Acyclic Graphs

  • Michael Wachter
  • Rolf Haenni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4509)

Abstract

This paper continues the line of research on the representation and compilation of propositional knowledge bases with propositional directed acyclic graphs (PDAG), negation normal forms (NNF), and binary decision diagrams (BDD). The idea is to permit variables with more than two states and to explicitly represent them in their most natural way. The resulting representation languages are analyzed according to their succinctness, supported queries, and supported transformations. The paper shows that most results from PDAGs, NNFs, and BDDs can be generalized to their corresponding multi-state extension. This implies that the entire knowledge compilation map is extensible from propositional to multi-state variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers 27(6), 509–516 (1978)MATHCrossRefGoogle Scholar
  2. 2.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)MATHCrossRefGoogle Scholar
  3. 3.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  4. 4.
    Darwiche, A.: Decomposable negation normal form. Journal of the ACM 48(4), 608–647 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Darwiche, A., Marquis, P.: A knowlege compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for representing Boolean functions. In: Doherty, P., Mylopoulos, J., Welty, C. (eds.) KR’06, 10th International Conference on Principles of Knowledge Representation and Reasoning, Lake District, U.K., pp. 277–285. AAAI Press, Menlo Park (2006)Google Scholar
  7. 7.
    Hill, F.J., Peterson, G.R.: Introduction to Switching Theory and Logical Design. John Wiley and Sons, New York (1974)MATHGoogle Scholar
  8. 8.
    Lukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie Cl. III 23, 30–50 (1930)Google Scholar
  9. 9.
    Rosser, J.B., Turquette, A.R.: Many-Valued Logics. North-Holland, Amsterdam (1952)MATHGoogle Scholar
  10. 10.
    Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and Applications. Monographs on Discrete Mathematics and Applications, vol. 56. SIAM, Philadelphia (2000)MATHGoogle Scholar
  11. 11.
    Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In: IJCAI’05, 19th International Joint Conference on Artificial Intelligence, Edinburgh, U.K. (2005)Google Scholar
  12. 12.
    Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by counting models on compiled d-DNNF representations. In: ICAPS’05, 15th International Conference on Planning and Scheduling, Monterey, USA, pp. 141–150 (2005)Google Scholar
  13. 13.
    Sang, T., Beame, P., Kautz, H.: Solving Bayesian networks by weighted model counting. In: AAAI’05, 20th National Conference on Artificial Intelligence, Pittsburgh, USA, vol. 1, pp. 475–482 (2005)Google Scholar
  14. 14.
    Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Binary decision diagrams. In: Crama, Y., Hammer, P. (eds.) Boolean Functions, Volume II (to appear, 2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Wachter
    • 1
  • Rolf Haenni
    • 1
    • 2
  1. 1.University of BernSwitzerland
  2. 2.Bern University of Applied SciencesSwitzerland

Personalised recommendations