Problem-Solving Knowledge Mining from Users’ Actions in an Intelligent Tutoring System

  • Roger Nkambou
  • Engelbert Mephu Nguifo
  • Olivier Couturier
  • Philippe Fournier-Viger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4509)

Abstract

In an intelligent tutoring system (its), the domain expert should provide relevant domain knowledge to the tutor so that it will be able to guide the learner during problem solving. However, in several domains, this knowledge is not predetermined and should be captured or learned from expert users as well as intermediate and novice users. Our hypothesis is that, knowledge discovery (kd) techniques can help to build this domain intelligence in ITS. This paper proposes a framework to capture problem-solving knowledge using a promising approach of data and knowledge discovery based on a combination of sequential pattern mining and association rules discovery techniques. The framework has been implemented and is used to discover new meta knowledge and rules in a given domain which then extend domain knowledge and serve as problem space allowing the intelligent tutoring system to guide learners in problem-solving situations. Preliminary experiments have been conducted using the framework as an alternative to a path-planning problem solver in CanadarmTutor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heiner, C., Baker, R., Yacef, K.: Proceedings of the Educational Data Mining Workshop. ITS’06 (2006)Google Scholar
  2. 2.
    Graf, S., Bekele, R.: Forming heterogeneous groups for intelligent collaborative learning systems with ant colony optimization. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 217–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Amershi, S., Conati, C.: Automatic recognition of learner groups in exploratory learning environments. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 463–472. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Kay, J., Maisonneuve, N., Yacef, K., Zaïane, O.: Mining Patterns of Events in Students’ Teamwork Data. In: Proceedings of the Workshop on Educational Data Mining Workshop. ITS’2006, pp. 45–52 (2006)Google Scholar
  5. 5.
    McLaren, B.M., et al.: Bootstrapping Novice Data: Semi-Automated Tutor Authoring Using Student Log Files. In: Proceedings of the Workshop on Analyzing Student-Tutor Logs. ITS’04 (2004)Google Scholar
  6. 6.
    Blessing, S.B.: A Programming by Demonstration Authoring Tool for Model-Tracing Tutors. In: Authoring Tools for Advanced Technology Learning Environments: Toward Cost-Effective Adaptive, Interactive and Intelligent Educational Software, pp. 93–119. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  7. 7.
    Jarvis, M.P., Nuzzo-Jones, G., Heffernan, N.T.: Applying machine learning techniques to rule generation in intelligent tutoring systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 541–553. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor authoring tools (CTAT): Preliminary evaluation of efficiency gains. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 61–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    VanLehn, K.: The advantages of Explicity Representing Problem Spaces. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, p. 3. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Kabanza, F., Nkambou, R., Belghith, K.: Path-Planning for Autonomous Training on Robot Manipulators in Space. In: IJCAI 2005, pp. 1729–1731 (2005)Google Scholar
  11. 11.
    Sanchez, G., Latombe, J.C.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: Int. Symposium on Robotics Research (ISRR’01). Springer Tracts in Advanced Robotics, pp. 403–417. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Likhachev, M., Ferguson, D., Stentz, A., Thrun, S.: Anytime Dynamic A*: An Anytime Replanning Algorithme. In: Proceedings of International Conference on Automated Planning and Scheduling (2005)Google Scholar
  13. 13.
    Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the 1995 Int. Conference on Data Engineering, pp. 3–14 (1995)Google Scholar
  14. 14.
    Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning Journal 42(1-2), 31–60 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Pei, J., Han, J., et al.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Transaction on Knowledge and Data Engineering 16(10) (2004)Google Scholar
  16. 16.
    Masseglia, F., Cathala, F., Poncelet, P.: The PSP Approach for Mining Sequential Patterns. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 176–184. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: IGB: A new informative generic base of association rules. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 81–90. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Roger Nkambou
    • 1
  • Engelbert Mephu Nguifo
    • 2
  • Olivier Couturier
    • 2
  • Philippe Fournier-Viger
    • 1
  1. 1.Université du Québec à Montréal (Canada) 
  2. 2.CRIL-CNRS, IUT de Lens (France) 

Personalised recommendations