Recurrent Boosting for Classification of Natural and Synthetic Time-Series Data

  • Robert D. Vincent
  • Joelle Pineau
  • Philip de Guzman
  • Massimo Avoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4509)

Abstract

Boosted ensemble classifiers have a demonstrated ability to discover regularities in large, poorly modeled datasets. In this paper we present an application of multi-hypothesis AdaBoost to detect epileptiform activity from electrophysiological recordings. While existing boosting methods do not account automatically for the sequence information that is available when analyzing time-series data, we present a recurrent extension to AdaBoost, and show that it improves classification accuracy in our application domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy, S.A.: An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 24, 1455–1481 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)Google Scholar
  4. 4.
    Hauser, W.A., Hesdorffer, D.C.: Epilepsy: Frequency, Causes and Consequences. Demos, New York (1990)Google Scholar
  5. 5.
    Kwan, P., Brodie, M.J.: Early identification of refractory epilepsy. New England Journal of Medicine 342(5), 314–319 (2000)CrossRefGoogle Scholar
  6. 6.
    Uthman, B.M., Reichl, A.M., Dean, J.C., Eisenschenk, S., Gilmore, R., Reid, S., Roper, S.N., Wilder, B.J.: Effectiveness of vagus nerve stimulation in epilepsy patients: a 12 year observation. Neurology 63, 1124–1126 (2004)Google Scholar
  7. 7.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2) (2004)Google Scholar
  9. 9.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar
  10. 10.
    Chiu, A.W.L., Daniel, S., Khosravani, H., Carlen, P.L., Bardakjian, B.L.: Prediction of seizure onset in an in-vitro hippocampal slice model of epilepsy using gaussian-based and wavelet-based artificial neural networks. Annals of Biomedical Engineering 33(6), 798–810 (2005)CrossRefGoogle Scholar
  11. 11.
    Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clinical Neurophysiology 114, 898–908 (2003)CrossRefGoogle Scholar
  12. 12.
    Martinerie, J., Adam, C., Le Van Quyen, M., Baulac, M., Clemenceau, S., Renault, B., Varela, F.J.: Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine 4(10), 1173–1176 (1998)CrossRefGoogle Scholar
  13. 13.
    De Guzman, P., D’Antuono, M., Avoli, M.: Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro. Neuroscience 123, 875–886 (2004)CrossRefGoogle Scholar
  14. 14.
    Vincent, R.D., Pineau, J., de Guzman, P., Avoli, M.: Labeled epileptiform data (2006), http://www.cs.mcgill.ca/~jpineau/datasets/epilepsy.tar.gz
  15. 15.
    Schapire, R.E.: The boosting approach to machine learning: an overview. In: Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification, pp. 149–172. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37, 297–336 (1999)MATHCrossRefGoogle Scholar
  17. 17.
    Bergstra, J., Casagrande, N., Eck, D.: Two algorithms for timbre- and rhythm-based multi-resolution audio classification. In: 1st Annual Music Information Retrieval Exchange (2005)Google Scholar
  18. 18.
    Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)MATHCrossRefGoogle Scholar
  19. 19.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2) (1989)Google Scholar
  20. 20.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)MATHGoogle Scholar
  21. 21.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  22. 22.
    Diez, J.J.R., González, C.A.: Applying boosting to similarity literals for time series classification. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 210–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Boné, R., Assaad, M., Crucianu, M.: Boosting recurrent neural networks for time series prediction. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural Networks and Genetic Algorithms, pp. 18–22. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Robert D. Vincent
    • 1
  • Joelle Pineau
    • 1
  • Philip de Guzman
    • 2
  • Massimo Avoli
    • 2
  1. 1.School of Computer Science, McGill University, Montreal, QuebecCanada
  2. 2.Montreal Neurological Institute, McGill University, Montreal, QuebecCanada

Personalised recommendations