Advertisement

An ACO Algorithm with Adaptive Volatility Rate of Pheromone Trail

  • Zhifeng Hao
  • Han Huang
  • Yong Qin
  • Ruichu Cai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4490)

Abstract

Ant colony optimization (ACO) has been proved to be one of the best performing algorithms for NP-hard problems as TSP. The volatility rate of pheromone trail is one of the main parameters in ACO algorithms. It is usually set experimentally in the literatures for the application of ACO. The present paper proposes an adaptive strategy for the volatility rate of pheromone trail according to the quality of the solutions found by artificial ants. The strategy is combined with the setting of other parameters to form a new ACO algorithm. Finally, the experimental results of computing traveling salesman problems indicate that the proposed algorithm is more effective than other ant methods.

Keywords

Ant colony optimization pheromone trail adaptive volatility rate 

References

  1. 1.
    Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for Discrete Optimization. Massachusetts Institute of Technology, Artificial Life 5, 137–172 (1999)CrossRefGoogle Scholar
  2. 2.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  4. 4.
    Watanabe, I., Matsui, S.L.: Improving the Performance of ACO Algorithms by Adaptive Control of Candidate Set. In: The 2003 Congress on Evolutionary Computation, CEC ’03, 8-12 Dec. 2003, vol. 2, pp. 1355–1362 (2003)Google Scholar
  5. 5.
    Pilat, M.L., White, T.: Using Genetic Algorithms to Optimize ACS-TSP. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 282–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning approach to the travelling salesman problem. In: Proceedings of ML-95, Twelfth Intern. Conf. On Machine Learning, pp. 252–260. Morgan Kaufmann, San Francisco (1995)Google Scholar
  7. 7.
    Huang, H., Yang, X.W., Hao, Z.F., Cai, R.C.: A novel ACO algorithm with adaptive parameter. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNBI), vol. 4115, pp. 12–21. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Sun, J., Xiong, S.W., Guo, F.M.: A new pheromone updating strategy in ant colony optimization. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 620–625 (2004)Google Scholar
  9. 9.
    Reinelt, G.: TSPLIB. A traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Zhifeng Hao
    • 1
    • 2
  • Han Huang
    • 1
  • Yong Qin
    • 3
  • Ruichu Cai
    • 1
  1. 1.College of Computer Science and Engineering, South China University of Technology, Guangzhou 510640P.R. China
  2. 2.National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096P.R. China
  3. 3.Center of Information and Network, Maoming University, Maoming, Guangdong, 525000P.R. China

Personalised recommendations