A Bayesian Multilevel Modeling Approach for Data Query in Wireless Sensor Networks

  • Honggang Wang
  • Hua Fang
  • Kimberly Andrew Espy
  • Dongming Peng
  • Hamid Sharif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4489)

Abstract

In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the real-time data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings.

Keywords

Bayesian Multilevel Modeling Wireless Sensor Network 

References

  1. 1.
    Jain, A.E.Y., Wanf, Y.: Adaptive stream management using kalman filters. In: SIGMOD (2004)Google Scholar
  2. 2.
    Kotidis, Y.: Snapshot queries: towards data-centric sensor networks. In: Proc. Of the 21th Intl. Conf. on Data Engineering (April 2005)Google Scholar
  3. 3.
    Chu, D., Desphande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: ICDE (April 2006)Google Scholar
  4. 4.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Communications 1(4), 660–670 (2002)CrossRefGoogle Scholar
  5. 5.
    Lin, C.R., Gerla, M.: Adaptive Clustering for Mobile Wireless Network. IEEE J. Select. Area Commun. 15, 1265–1275 (1997)CrossRefGoogle Scholar
  6. 6.
    Ryu, J.H., Song, S., Cho, D.H.: Energy-Conserving Clustering Scheme for Multicasting in Two-tier Mobile Ad-Hoc Networks. Electron. Lett. 37, 1253–1255 (2001)CrossRefGoogle Scholar
  7. 7.
    Hou, T.C., Tsai, T.J.: Distributed Clustering for Multimedia Support in Mobile Multihop Ad Hoc Network. IEICE Trans. Commun. E84B, 760–770 (2001)Google Scholar
  8. 8.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academy Press, San Diego (2001)Google Scholar
  9. 9.
  10. 10.
    SAS Institute Inc.: SAS/STAT userí»s guide, version 9.1. SAS Institute Inc., Cary, NC (2003) Google Scholar
  11. 11.
    Fang, H.: %hlmdata and %hlmrmpower: Traditional repeated measures vs. HLM for multilevel longitudinal data analysis - power and type I error rate comparison. In: Proceedings of the Thirty-First Annual SAS Users Group Conference, SAS Institute Inc., Cary, NC (2006)Google Scholar
  12. 12.
    Fang, H., Brooks, G.P., Rizzo, M.L., Barcikowski, R.S.: An empirical power analysis of multilevel linear model under three covariance structures in longitudinal data analysis. In: Proceedings of the Joint Statistical Meetings, American Statistical Association, Quality Industry and Technology Section [CD-ROM]. American Statistical Association, Seattle, Washington (2006)Google Scholar
  13. 13.
    Potthoff, R.F., Roy, S.N.: A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–326 (1964)MATHMathSciNetGoogle Scholar
  14. 14.
    Raudenbush, S.W., Bryk, A.S.: Hierarchical linear models: Applications and data analysis methods. Sage publications, Inc., London (2002)Google Scholar
  15. 15.
    McCulloch, C.E., Searle, S.R.: Generalized, linear, and mixed models. John Wiley & Sons, New York (2001)MATHGoogle Scholar
  16. 16.
    Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall/CRC, Boca Raton (2000)MATHGoogle Scholar
  17. 17.
    Little, R.J., Rubin, D.B.: Statistical analysis with missing data, 2nd edn. John Wiley, New York (2002)MATHGoogle Scholar
  18. 18.
    Ross, S.M.: Introduction to probability models. Academic Press, San Diego (2003)MATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Honggang Wang
    • 1
  • Hua Fang
    • 2
  • Kimberly Andrew Espy
    • 2
  • Dongming Peng
    • 1
  • Hamid Sharif
    • 1
  1. 1.Department of Computer and Electronics Engneering,University Of Nebraska Lincoln, Omaha, 68124USA
  2. 2.Office of Research, University of Nebraska Lincoln, Lincoln, 68588USA

Personalised recommendations