Advertisement

SymGrid-Par: Designing a Framework for Executing Computational Algebra Systems on Computational Grids

  • Abdallah Al Zain
  • Kevin Hammond
  • Phil Trinder
  • Steve Linton
  • Hans-Wolfgang Loidl
  • Marco Costanti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4488)

Abstract

SymGrid-Par is a new framework for executing large computer algebra problems on computational Grids. We present the design of SymGrid-Par, which supports multiple computer algebra packages, and hence provides the novel possibility of composing a system using components from different packages. Orchestration of the components on the Grid is provided by a Grid-enabled parallel Haskell (GpH). We present a prototype implementation of a core component of SymGrid-Par, together with promising measurements of two programs on a modest Grid to demonstrate the feasibility of our approach.

Keywords

Computational Grid Grid Resource Grid Service Prototype Implementation Symbolic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    High performance computations in group representation theory. Preprint, Institut für Experimentelle Mathematik, Univerisität GH Essen (1998)Google Scholar
  3. 3.
  4. 4.
    Geodise (2006), http://www.geodise.org/
  5. 5.
  6. 6.
    The OpenMath Format (2006), http://www.openmath.org/
  7. 7.
    Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: past, present, and future; a look at a Grid enabled server. In: Making the Global Infrastructure a Reality, pp. 613–622. Wiley, Chichester (2003)Google Scholar
  8. 8.
    Al Zain, A., Trinder, P., Loidl, H.-W., Michaelson, G.: Managing Heterogeneity in a Grid Parallel Haskell. J. Scalable Comp.: Practice and Experience 6(4) (2006)Google Scholar
  9. 9.
    Amrheim, B., Gloor, O., Kuchlin, W.: A case study of multithreaded grobner basis completion. In: Proc. of ISSAC’96, pp. 95–102. ACM Press, New York (1996)Google Scholar
  10. 10.
    Bundgen, R., Gobel, M., Kuchlin, W.: Multi-threaded ac term re-writing. In: Proc. PASCO’94, vol. 5, pp. 84–93. World Scientific, Singapore (1994)Google Scholar
  11. 11.
    Chan, K.C., Draz, A., Kaltofen, E.: A Distributed Approach to Problem Solving in Maple. In: Proc. 5th Maple Summer Workshop and Symp, pp. 13–21 (1994)Google Scholar
  12. 12.
    Char, B.W., et al.: Maple V Language Reference Manual. Maple Publishing, Waterloo (1991)zbMATHGoogle Scholar
  13. 13.
    Char, B.W.: A user’s guide to Sugarbush - Parallel Maple through Linda. Technical report, Drexel University, Dept. of Mathematics and Comp. Sci (1994)Google Scholar
  14. 14.
    Cole, M.: Algorithmic Skeletons. In: Hammond, K., Michaelson, G. (eds.) Research Directions in Parallel Functional Programming, pp. 289–304. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Cooperman, G.: Parallel gap: Mature interactive parallel. In: Groups and computation, III, Columbus, OH, 1999, Walter de Gruyter, Berlin (2001)Google Scholar
  16. 16.
    Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: Kant v4. J. Symb. Comput. 24(3/4), 267–283 (1997)zbMATHCrossRefGoogle Scholar
  17. 17.
    Delaitre, T., Goyeneche, A., Kacsuk, P., Kiss, T., Terstyanszky, G.Z., Winter, S.C.: GEMLCA: Grid Execution Management for Legacy Code Architecture Design. In: Proc. 30th EUROMICRO Conference, pp. 305–315 (2004)Google Scholar
  18. 18.
    The GAP Group: Gap – groups, algorithms, and programming, version 4.2. St. Andrews (2000) http://www.gap-system.org/gap.Google Scholar
  19. 19.
    Kuchlin, W.: Parsac-2: A parallel sac-2 based on threads. In: Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 341–353. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    Martínez, R., Peña, R.: Building an Interface Between Eden and Maple: A Way of Parallelizing Computer Algebra Algorithms. In: Trinder, P., Michaelson, G.J., Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 135–151. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Morisse, K., Kemper, A.: The Computer Algebra System MuPAD. Euromath Bulletin 1(2), 95–102 (1994)zbMATHGoogle Scholar
  22. 22.
    Petcu, D., Paprycki, M., Dubu, D.: Design and Implementation of a Grid Extension of Maple (2005)Google Scholar
  23. 23.
    Roch, L., Villard, G.: Parallel computer algebra. In: ISSAC’97, Preprint IMAG, Grenoble, France (1997)Google Scholar
  24. 24.
    Tepeneu, D., Ida, T.: MathGridLink – Connecting Mathematica to the Grid. In: Proc. IMS ’04, Banff, Alberta (2004)Google Scholar
  25. 25.
    Trinder, P.W., Hammond, K., Loidl, H.-W., Peyton Jones, S.L.: Algorithm + Strategy = Parallelism. J. Functional Programming 8(1), 23–60 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Abdallah Al Zain
    • 1
  • Kevin Hammond
    • 2
  • Phil Trinder
    • 1
  • Steve Linton
    • 2
  • Hans-Wolfgang Loidl
    • 3
  • Marco Costanti
    • 2
  1. 1.Dept. of Mathematics and Comp. Sci., Heriot-Watt University, EdinburghUK
  2. 2.School of Computer Science, University of St Andrews, St AndrewsUK
  3. 3.Ludwig-Maximilians Universität, MünchenGermany

Personalised recommendations