Computing Locus Equations for Standard Dynamic Geometry Environments

  • Francisco Botana
  • Miguel A. Abánades
  • Jesús Escribano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4488)

Abstract

GLI (Geometric Locus Identifier), an open web-based tool to determine equations of geometric loci specified using Cabri Geometry and The Geometer’s Sketchpad, is described. A geometric construction of a locus is uploaded to a Java Servlet server, where two computer algebra systems, CoCoA and Mathematica, following the Groebner basis method, compute the locus equation and its graph. Moreover, an OpenMath description of the geometric construction is given. GLI can be efficiently used in mathematics education, as a supplement of the locus functions of the standard dynamic geometry systems. The system is located at http://nash.sip.ucm.es/GLI/GLI.html.

Keywords

Interactive geometry Automated deduction Locus OpenMath 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Autin, B.: Pure and applied geometry with Geometrica. In: Proc. 8th Int. Conf. on Applications of Computer Algebra (ACA 2002), pp. 109–110 (2002)Google Scholar
  2. 2.
    Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem discovery. Computers and Education 38(1–3), 21–35 (2002)CrossRefGoogle Scholar
  3. 3.
    Botana, F.: Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 211–218. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Mathematics and Computers in Simulation 61(2), 141–154 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Botana, F.: A Web-based intelligent system for geometric discovery. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 92–110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra, Available via anonymous ftp from: http://cocoa.dima.unige.it/
  8. 8.
    Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Taiwan (1998)Google Scholar
  9. 9.
  10. 10.
    Jackiw, N.: The Geometer’s Sketchpad v 4.0. Key Curriculum Press, Berkeley (2002)Google Scholar
  11. 11.
    Laborde, J.M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)Google Scholar
  12. 12.
    Miyaji, C., Kimura, H.: Writing a graphical user interface for Mathematica using Mathematica and Mathlink. In: Proc. 2nd Int. Mathematica Symposium (IMS’97), pp. 345–352 (1997)Google Scholar
  13. 13.
  14. 14.
    Richter–Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)Google Scholar
  15. 15.
    Roanes–Lozano, E., Roanes–Macías, E., Villar, M.: A bridge between dynamic geometry and computer algebra. Mathematical and Computer Modelling 37(9–10), 1005–1028 (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Schumann, H.: A dynamic approach to ‘simple’ algebraic curves. Zentralblatt für Didaktik der Mathematik 35(6), 301–316 (2003)CrossRefGoogle Scholar
  17. 17.
    Wang, D.: GEOTHER: A geometry theorem prover. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 166–170. Springer, Heidelberg (1996)Google Scholar
  18. 18.

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Francisco Botana
    • 1
  • Miguel A. Abánades
    • 2
  • Jesús Escribano
    • 3
  1. 1.Departamento de Matemática Aplicada I, Universidad de Vigo, Campus A, Xunqueira, 36005 PontevedraSpain
  2. 2.Ingeniería Técnica en Informática de Sistemas, CES Felipe II (UCM), 28300, AranjuezSpain
  3. 3.Departamento de Sistemas Informáticos y Computación, Universidad Complutense de, Madrid, 28040 MadridSpain

Personalised recommendations