A Generalised-Mutual-Information-Based Oracle for Hierarchical Radiosity

  • Jaume Rigau
  • Miquel Feixas
  • Mateu Sbert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4488)


One of the main problems in the radiosity method is how to discretise a scene into mesh elements that allow us to accurately represent illumination. In this paper we present a new refinement criterion for hierarchical radiosity based on the continuous and discrete generalised mutual information measures between two patches or elements. These measures, derived from the generalised entropy of of Harvda-Charvát-Tsallis, express the information transfer within a scene. The results obtained improve on the ones based on kernel smoothness and Shannon mutual information.


Root Mean Square Error Mutual Information Information Transfer Peak Signal Noise Ratio Adaptive Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B.: Modelling the interaction of light between diffuse surfaces. Computer Graphics (Proceedings of SIGGRAPH ’84) 18(3), 213–222 (1984)CrossRefGoogle Scholar
  2. 2.
    Hanrahan, P., Salzman, D., Aupperle, L.: A rapid hierarchical radiosity algorithm. Computer Graphics (Proceedings of SIGGRAPH ’91) 25(4), 197–206 (1991)CrossRefGoogle Scholar
  3. 3.
    Feixas, M., del Acebo, E., Bekaert, P., Sbert, M.: An information theory framework for the analysis of scene complexity. Computer Graphics Forum (Proceedings of Eurographics ’99) 18(3), 95–106 (1999)CrossRefGoogle Scholar
  4. 4.
    Feixas, M.: An Information-Theory Framework for the Study of the Complexity of Visibility and Radiosity in a Scene. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (Dec. 2002)Google Scholar
  5. 5.
    Taneja, I.J.: Bivariate measures of type α and their applications. Tamkang Journal of Mathematics 19(3), 63–74 (1988)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Havrda, J., Charvát, F.: Quantication method of classication processes. Concept of structural α-entropy. Kybernetika, 30–35 (1967)Google Scholar
  7. 7.
    Gortler, S.J., Schröder, P., Cohen, M.F., Hanrahan, P.: Wavelet radiosity. In: Kajiya, J.T. (ed.) Computer Graphics (Proceedings of SIGGRAPH ’93), August 1993. Annual Conference Series, vol. 27, pp. 221–230 (1993)Google Scholar
  8. 8.
    Feixas, M., Rigau, J., Bekaert, P., Sbert, M.: Information-theoretic oracle based on kernel smoothness for hierarchical radiosity. In: Short Presentations (Eurographics ’02), September 2002, pp. 325–333 (2002)Google Scholar
  9. 9.
    Rigau, J., Feixas, M., Sbert, M.: Information-theory-based oracles for hierarchical radiosity. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 275–284. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Bekaert, P.: Hierarchical and Stochastic Algorithms for Radiosity. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium (December 1999)Google Scholar
  11. 11.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52(1/2), 479–487 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tsallis, C.: Generalized entropy-based criterion for consistent testing. Physical Review E 58, 1442–1445 (1998)CrossRefGoogle Scholar
  13. 13.
    Taneja, I.J.: On generalized information measures and their applications. In: Advances in Electronics and Electron Physics, vol. 76, pp. 327–413. Academic Press, London (1989)Google Scholar
  14. 14.
    Rigau, J.: Information-Theoretic Refinement Criteria for Image Synthesis. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (November 2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jaume Rigau
    • 1
  • Miquel Feixas
    • 1
  • Mateu Sbert
    • 1
  1. 1.Institut d’Informàtica i Aplicacions, Campus Montilivi P-IV, 17071-GironaSpain

Personalised recommendations