An Interactive Graphical Environment for Code Optimization

  • Jie Tao
  • Thomas Dressler
  • Wolfgang Karl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4488)


Applications usually do not show a satisfied initial performance and require optimization. This kind of optimization often covers a complete process, starting with gathering performance data, followed by performance visualization and analysis, up to bottleneck finding and code modification. In this paper we introduce DECO (Development Environment for Code Optimization), an interactive graphical interface that enables the user to conduct this whole process within a single environment.


Performance tools visualization cache optimization 


  1. 1.
    Brown, D.I., Hackstadt, S.T., Malony, A.D., Mohr, B.: Program Analysis Environments for Parallel Language Systems: The TAU Environment. In: Proc. of the Workshop on Environments and Tools For Parallel Scientific Computing, May 1994, pp. 162–171 (1994)Google Scholar
  2. 2.
    Brunst, H., Hoppe, H.-C., Nagel, W.E., Winkler, M.: Performance Optimization for Large Scale Computing: The Scalable VAMPIR Approach. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 751–760. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D.: Using PAPI For Hardware Performance Monitoring On Linux Systems. In: Linux Clusters: The HPC Revolution (June 2001)Google Scholar
  4. 4.
    Fenlason, J., Stallman, R.: GNU gprof: The GNU Profiler, available at
  5. 5.
    Intel Corporation. Intel Software Development Products, available at
  6. 6.
    Magnusson, P.S., Werner, B.: Efficient Memory Simulation in SimICS. In: Proceedings of the 8th Annual Simulation Symposium, Phoenix, Arizona, USA (April 1995)Google Scholar
  7. 7.
    Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn parallel performance measurement tool. IEEE Computer 28(11), 37–46 (1995)Google Scholar
  8. 8.
    Müller-Pfefferkorn, R., Nagel, W.E., Trenkler, B.: Optimizing Cache Access: A Tool for Source-to-Source Transformations and Real-Life Compiler Tests. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 72–81. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Quaing, B., Tao, J., Karl, W.: YACO: A User Conducted Visualization Tool for Supporting Cache Optimization. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 694–703. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Tao, J., Karl, W.: CacheIn: A Toolset for Comprehensive Cache Inspection. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 174–181. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Tao, J., Schloissnig, S., Karl, W.: Analysis of the Spatial and Temporal Locality in Data Accesses. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 502–509. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jie Tao
    • 1
  • Thomas Dressler
    • 2
  • Wolfgang Karl
    • 2
  1. 1.Institut für Wissenschaftliches Rechnen, Forschungszentrum Karlsruhe, 76021 KarlsruheGermany
  2. 2.Institut für Technische Informatik, Institut für Technische InformatiK, 76128 KarlsruheGermany

Personalised recommendations