Compressed Sensing and Time-Parallel Reduced-Order Modeling for Structural Health Monitoring Using a DDDAS

  • J. Cortial
  • C. Farhat
  • L. J. Guibas
  • M. Rajashekhar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4487)

Abstract

This paper discusses recent progress achieved in two areas related to the development of a Dynamic Data Driven Applications System (DDDAS) for structural and material health monitoring and critical event prediction. The first area concerns the development and demonstration of a sensor data compression algorithm and its application to the detection of structural damage. The second area concerns the prediction in near real-time of the transient dynamics of a structural system using a nonlinear reduced-order model and a time-parallel ODE (Ordinary Differential Equation) solver.

References

  1. 1.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Rice, J., Farhat, C., Lesoinne, M., Lechenault, F.: DDEMA: A Data Driven Environment for Multiphysics Applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 309–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Michopoulos, J., Tsompanopoulou, P., Houstis, E., Farhat, C., Lesoinne, M., Rice, J., Joshi, A.: On a Data Driven Environment for Multiphysics Applications. Fut. Generation Comp. Sys. 21(6), 953–968 (2005)CrossRefGoogle Scholar
  3. 3.
    Farhat, C., Chandesris, M.: Time-Decomposed Parallel Time-Integrators: Theory and Feasability Studies for Fluid, Structure, and Fluid-Structure Applications. Internat. J. Numer. Meths. Engrg. 58(9), 1397–1434 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Farhat, C., Cortial, J., Dastillung, C., Bavestrello, H.: Time-Parallel Implicit Integrators for the Near-Real-Time Prediction of Linear Structural Dynamic Responses. Internat. J. Numer. Meths. Engrg. 67(5), 697–724 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Farhat, C., Hemez, F.: Updating Finite Element Dynamic Models Using an Element-by-Element Sensitivity Methodology. AIAA J. 31(9), 1702–1711 (1993)MATHCrossRefGoogle Scholar
  6. 6.
    Doebling, S.W., Hemez, F.M., Peterson, L.D., Farhat, C.: Improved Damage Location Accuracy Using Strain Energy-Based Mode Selection Criteria. AIAA J. 35(4), 693–699 (1997)CrossRefGoogle Scholar
  7. 7.
    Donoho, D.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Farhat, C., Geuzaine, P., Brown, G.: Application of a Three-Field Nonlinear Fluid-Structure Formulation to the Prediction of the Aeroelastic Parameters of an F-16 Fighter. Comput. & Fluids 32, 3–29 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Geuzaine, P., Brown, G., Harris, C., Farhat, C.: Aeroelastic Dynamic Analysis of a Full F-16 Configuration for Various Flight Conditions. AIAA J. 41, 363–371 (2003)CrossRefGoogle Scholar
  10. 10.
    Lieu, T., Farhat, C., Lesoinne, M.: Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration. Comput. Meths. Appl. Mech. Engrg. 195, 5730–5742 (2006)MATHCrossRefGoogle Scholar
  11. 11.
    Lieu, T., Farhat, C., Lesoinne, M.: Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration. Comput. Meths. Appl. Mech. Engrg. 195, 5730–5742 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • J. Cortial
    • 1
  • C. Farhat
    • 1
    • 2
  • L. J. Guibas
    • 3
  • M. Rajashekhar
    • 3
  1. 1.Institute for Computational and Mathematical Engineering 
  2. 2.Department of Mechanical Engineering 
  3. 3.Department of Computer Science, Stanford University, Stanford, CA 94305U.S.A

Personalised recommendations