AIMSS: An Architecture for Data Driven Simulations in the Social Sciences

  • Catriona Kennedy
  • Georgios Theodoropoulos
  • Volker Sorge
  • Edward Ferrari
  • Peter Lee
  • Chris Skelcher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4487)

Abstract

This paper presents a prototype implementation of an intelligent assistance architecture for data-driven simulation specialising in qualitative data in the social sciences. The assistant architecture semi-automates an iterative sequence in which an initial simulation is interpreted and compared with real-world observations. The simulation is then adapted so that it more closely fits the observations, while at the same time the data collection may be adjusted to reduce uncertainty. For our prototype, we have developed a simplified agent-based simulation as part of a social science case study involving decisions about housing. Real-world data on the behaviour of actual households is also available. The automation of the data-driven modelling process requires content interpretation of both the simulation and the corresponding real-world data. The paper discusses the use of Association Rule Mining to produce general logical statements about the simulation and data content and the applicability of logical consistency checking to detect observations that refute the simulation predictions.

Keywords

Architecture Data Driven Simulations Social Sciences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, C., Theodoropoulos, G.: Intelligent Management of Data Driven Simulations to Support Model Building in the Social Sciences. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 562–569. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Kennedy, C., Theodoropoulos, G., Ferrari, E., Lee, P., Skelcher, C.: Towards an Automated Approach to Dynamic Interpretation of Simulations. In: Proceedings of the Asia Modelling Symposium 2007, Phuket, Thailand (March 2007)Google Scholar
  3. 3.
    Birkin, M., Turner, A., Wu, B.: A Synthetic Demographic Model of the UK Population: Methods, Progress and Problems. In: Second International Conference on e-Social Science, Manchester, UK (June 2006)Google Scholar
  4. 4.
    Brogan, D., Reynolds, P., Bartholet, R., Carnahan, J., Loitière, Y.: Semi-automated Simulation Transformation for DDDAS. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 721–728. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the International Conference on Very Large Databases, Santiage, Chile, pp. 478–499. Morgan Kaufmann, Los Altos (1994)Google Scholar
  6. 6.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, San Fransisco (2005)MATHGoogle Scholar
  7. 7.
    Padmanabhan, B., Tuzhilin, A.: A Belief-Driven Method for Discovering Unexpected Patterns. In: Knowledge Discovery and Data Mining, pp. 94–100 (1998)Google Scholar
  8. 8.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Design Automation Conference (DAC 2001), Las Vegas (June 2001)Google Scholar
  9. 9.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)MATHGoogle Scholar
  10. 10.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)Google Scholar
  11. 11.
    Michalski, R.S., Stepp, R.E.: Learning from Observation: Conceptual Clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An artificial intelligence approach, pp. 331–363. Morgan Kauffmann, Palo Alto (1983)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Catriona Kennedy
    • 1
  • Georgios Theodoropoulos
    • 1
  • Volker Sorge
    • 1
  • Edward Ferrari
    • 2
  • Peter Lee
    • 2
  • Chris Skelcher
    • 2
  1. 1.School of Computer Science, University of BirminghamUK
  2. 2.School of Public Policy, University of BirminghamUK

Personalised recommendations