Simulating Weed Propagation Via Hierarchical, Patch-Based Cellular Automata

  • Adam G. Dunn
  • Jonathan D. Majer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4487)


Ecological systems are complex systems that feature heterogeneity at a number of spatial scales. Modelling weed propagation is difficult because local interactions are unpredictable, yet responsible for global patterns. A patch-based and hierarchical cellular automaton using probabilistic connections suits the nature of environmental weed dispersal mechanisms. In the presented model, weed dispersal mechanisms, including human disturbance and dispersal by fauna, are approximated by pathways through a network of cells. The results of simulations provide evidence that the method is suitable for modelling weed dispersal mechanisms using multiple scales of observation.


Environmental weeds hierarchical patch dynamics cellular automata multiscale heterogeneity 


  1. 1.
    Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J.: Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)CrossRefGoogle Scholar
  2. 2.
    Ellis, A., Sutton, D., Knight, J. (eds.): State of the Environment Report Western Australia draft 2006. Environmental Protection Authority (2006)Google Scholar
  3. 3.
    Anon.: Gondwana Link Website (2006),, last accessed 05/10/2006
  4. 4.
    Bradbury, R.H., Green, D.G., Snoad, N.: Are ecosystems complex systems? In: Bossomaier, T.R.G., Green, D.G. (eds.) Complex Systems, pp. 339–365. Cambridge University Press, Cambridge (2000)Google Scholar
  5. 5.
    van Groenendael, J.M.: Patchy distribution of weeds and some implications for modelling population dynamics: a short literature review. Weed Research 28, 437–441 (1988)CrossRefGoogle Scholar
  6. 6.
    Green, D., Klomp, N., Rimmington, G., Sadedin, S.: Complexity in Landscape Ecology. Landscape Series, vol. 4. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Greig-Smith, P.: Pattern in vegetation. Journal of Ecology 67, 755–779 (1979)CrossRefGoogle Scholar
  8. 8.
    Nathan, R., Perry, G., Cronin, J.T., Strand, A.E., Cain, M.L.: Methods for estimating long-distance dispersal. Oikos 103, 261–273 (2003)CrossRefGoogle Scholar
  9. 9.
    Wu, J.: Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology 19, 125–138 (2004)CrossRefGoogle Scholar
  10. 10.
    Wu, J.: From balance-of-nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995)CrossRefGoogle Scholar
  11. 11.
    Wu, J., David, J.L.: A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecological Modelling 153, 7–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Monographs and Texts in Statistical Physics. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  13. 13.
    O’Regan, W., Kourtz, P., Nozaki, S.: Bias in the contagion analog to fire spread. Forest Science 22, 61–68 (1976)Google Scholar
  14. 14.
    Schönfisch, B.: Anisotropy in cellular automata. BioSystems 41, 29–41 (1997)CrossRefGoogle Scholar
  15. 15.
    Higgins, S.I., Richardson, D.M.: Predicting plant migration rates in a changing world: The role of long-distance dispersal. The American Naturalist 153(5), 464–475 (1999)CrossRefGoogle Scholar
  16. 16.
    Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations — Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (1992)zbMATHGoogle Scholar
  17. 17.
    Buckley, Y.M., Anderson, S., Catterall, C.P., Corlett, R.T., Engel, T., Gosper, C.R., Nathan, R., Richardson, D.M., Setter, M., Spiegel, O., Vivian-Smith, G., Voigt, F.A., Weir, J.E.S., Westcott, D.A.: Management of plant invasions mediated by frugivore interactions. Journal of Applied Ecology 43, 848–857 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Adam G. Dunn
    • 1
  • Jonathan D. Majer
    • 1
  1. 1.Alcoa Research Centre for Stronger Communities and, Department of Environmental Biology, Curtin University of TechnologyWestern Australia

Personalised recommendations