Ideal Multipartite Secret Sharing Schemes

  • Oriol Farràs
  • Jaume Martí-Farré
  • Carles Padró
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)


Multipartite secret sharing schemes are those having a multipartite access structure, in which the set of participants is divided into several parts and all participants in the same part play an equivalent role. Several particular families of multipartite schemes, such as the weighted threshold schemes, the hierarchical and the compartmented schemes, and the ones with bipartite or tripartite access structure have been considered in the literature. The characterization of the access structures of ideal secret sharing schemes is one of the main open problems in secret sharing. In this work, the characterization of ideal multipartite access structures is studied with all generality. Our results are based on the well-known connections between ideal secret sharing schemes and matroids. One of the main contributions of this paper is the application of discrete polymatroids to secret sharing. They are proved to be a powerful tool to study the properties of multipartite matroids. In this way, we obtain some necessary conditions and some sufficient conditions for a multipartite access structure to be ideal.

Our results can be summarized as follows. First, we present a characterization of matroid-related multipartite access structures in terms of discrete polymatroids. As a consequence of this characterization, a necessary condition for a multipartite access structure to be ideal is obtained. Second, we use linear representations of discrete polymatroids to characterize the linearly representable multipartite matroids. In this way we obtain a sufficient condition for a multipartite access structure to be ideal. Finally, we apply our general results to obtain a complete characterization of ideal tripartite access structures, which was until now an open problem.


Secret sharing Ideal secret sharing schemes Ideal access structures Multipartite secret sharing Multipartite matroids Discrete polymatroids 


  1. 1.
    Beimel, A., Livne, N.: On Matroids and Non-ideal Secret Sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 482–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 600–619. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  5. 5.
    Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptogr. 11, 107–122 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 148–167. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)MathSciNetGoogle Scholar
  8. 8.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology 4, 123–134 (1991)zbMATHGoogle Scholar
  9. 9.
    Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares of secret sharing schemes. J. Cryptology 6, 157–168 (1993)zbMATHCrossRefGoogle Scholar
  10. 10.
    Collins, M.J.: A Note on Ideal Tripartite Access Structures. Cryptology ePrint Archive, Report 2002/193 (2002),
  11. 11.
    Csirmaz, L.: The size of a share must be large. J. Cryptology 10, 223–231 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Herranz, J., Sáez, G.: New Results on Multipartite Access Structures. IEE Proceedings on Information Security 153, 153–162 (2006)CrossRefGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T.: Discrete polymatroids. J. Algebraic Combin. 16, 239–268 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom’87, pp. 99–102 (1987)Google Scholar
  15. 15.
    Jackson, W.-A., Martin, K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inform. Theory 29, 35–41 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lehman, A.: A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12, 687–725 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Martí-Farré, J., Padró, C.: Secret sharing schemes with three or four minimal qualified subsets. Des. Codes Cryptogr. 34, 17–34 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Martí-Farré, J., Padró, C.: Secret sharing schemes on access structures with intersection number equal to one. Discrete Applied Mathematics 154, 552–563 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Martí-Farré, J., Padró, C.: Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 201–215. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Martí-Farré, J., Padró, C.: On Secret Sharing Schemes, Matroids and Polymatroids. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 273–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Matúš, F.: Matroid representations by partitions. Discrete Math. 203, 169–194 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Morillo, P., Padró, C., Sáez, G., Villar, J.L.: Weighted Threshold Secret Sharing Schemes. Inf. Process. Lett. 70, 211–216 (1999)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ng, S.-L.: A Representation of a Family of Secret Sharing Matroids. Des. Codes Cryptogr. 30, 5–19 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ng, S.-L.: Ideal secret sharing schemes with multipartite access structures. IEE Proc.-Commun. 153, 165–168 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Ng, S.-L., Walker, M.: On the composition of matroids and ideal secret sharing schemes. Des. Codes Cryptogr. 24, 49–67 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Oxley, J.G.: Matroid theory. The Clarendon Press, New York (1992)zbMATHGoogle Scholar
  28. 28.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Seymour, P.D.: A forbidden minor characterization of matroid ports. Quart. J. Math. Oxford Ser. 27, 407–413 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Seymour, P.D.: On secret-sharing matroids. J. Combin. Theory Ser. B 56, 69–73 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Simmons, G.J.: How to (Really) Share a Secret. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 390–448. Springer, Heidelberg (1990)Google Scholar
  33. 33.
    Simonis, J., Ashikhmin, A.: Almost affine codes. Des. Codes Cryptogr. 14, 179–197 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Tassa, T.: Hierarchical Threshold Secret Sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 288–299. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  37. 37.
    Welsh, D.J.A.: Matroid Theory. Academic Press, London (1976)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Oriol Farràs
    • 1
  • Jaume Martí-Farré
    • 1
  • Carles Padró
    • 1
  1. 1.Dept. of Applied Maths. IVTechnical University of CataloniaBarcelona

Personalised recommendations