A Survey on Coding of Static and Dynamic 3D Meshes

  • Aljoscha Smolic
  • Ralf Sondershaus
  • Nikolče Stefanoski
  • Libor Váša
  • Karsten Müller
  • Jörn Ostermann
  • Thomas Wiegand
Part of the Signals and Communication Technology book series (SCT)


Motion Vector Geometry Image Dynamic Mesh Static Mesh Wavelet Detail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mäntylä, An Introduction to Solid Modeling, Computer Science Press, College Park, MD, 1988.Google Scholar
  2. 2.
    M. Alexa and W. Müller, Representing animations by principal components, Computer Graphics Forum, Vol. 19(3), 2000.Google Scholar
  3. 3.
    C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, Univ of Illinois Press, 1949. ISBN 0-252-72548-4.Google Scholar
  4. 4.
    H. Nyquist, Certain topics in telegraph transmission theory, Transaction AIEE, Vol. 47, pp. 617–644, April 1928. Reprint as classic paper in: Proceedings IEEE, Vol. 90, No. 2, Febary 2002.Google Scholar
  5. 5.
    A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (2 Ed.), Prentice-Hall, New Jersey, 1999. ISBN 0137549202.Google Scholar
  6. 6.
    N. S. Jayant and P. Noll, digital coding of waveforms, Prentice-Hall Int., London, 1984.Google Scholar
  7. 7.
    D. Marpe, H. Schwarz, and T. Wiegand, Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard, IEEE Transaction on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620–636, 2003.CrossRefGoogle Scholar
  8. 8.
    G. Taubin and J. Rossignac, Geometric compression through topological surgery, ACM Transactions on Graphics, Vol. 17, No. 2, pp. 84–115, 1998.CrossRefGoogle Scholar
  9. 9.
    J. Rossignac, Edgebreaker: Connectivity compression for triangle meshes, IEEE Transaction on Visualization and Computer Graphics, Vol. 5, No. 1, pp. 47–61, 1999.CrossRefGoogle Scholar
  10. 10.
    M. Isenburg and J. Snoeyink, Face fixer: Compressing polygon meshes with properties. Proceedings of SIGGRAPH 2000, pp. 263–270, July 2000.Google Scholar
  11. 11.
    C. Touma and C. Gotsman, Triangle mesh compression. Proceedings Graphics Interface 98, pp. 26–34, 1998.Google Scholar
  12. 12.
    M. Deering, Geometry compression. In SIGGRAPH ’95 Conference Proceedings, pp. 13–20, 1995.Google Scholar
  13. 13.
    S. Gumhold and W. Straßer,Real time compression of triangle mesh connectivity. Computer Graphics Proceedings, Annual Conference Series, 1998 (ACM SIGGRAPH ’98 Proceedings), pp. 133–140, July 1998.Google Scholar
  14. 14.
    J. Rossignac and A. Szymczak, Wrap and Zip: Linear Decoding of planar triangle graphs, IEEE Transaction Visualization Computer Graphics 5(1), 47–61, 1999.CrossRefMathSciNetGoogle Scholar
  15. 15.
    M. Isenburg and J. Snoeyink, Compressing the property mapping of polygon meshes. Proceedings of Pacific Graphics 2001, pp. 4–11, October 2001.Google Scholar
  16. 16.
    P. Alliez and M. Desbrun, Valence-driven connectivity encoding of 3D meshes, Computer Graphics Forum, 20:480–489, 2001.CrossRefGoogle Scholar
  17. 17.
    Z. Karni and C. Gotsman, Spectral compression of mesh geometry. Computer Graphics (Proceedings of SIGGRAPH), pp. 279–286, 2000.Google Scholar
  18. 18.
    X. Gu, S. J. Gortler and H. Hoppe Geometry images. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 355–361, ACM press, 2000.Google Scholar
  19. 19.
    H. Hoppe, Progressive meshes. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 99–108, August 1996.Google Scholar
  20. 20.
    J. Popovic and H. Hoppe. Progressive simplicial complexes. In Computer Graphics (SIGGRAPH’97 Proceedings), (1997).Google Scholar
  21. 21.
    G. Taubin, A. Gueziec, W. Horn and F. Lazarus, Progressive forest split compression. In SIGGRAPH’98, August 1998.Google Scholar
  22. 22.
    R. Pajarola and J. Rossignac, Compressed Progressive Meshes, Technical Report: GIT-GVU-99-05, GVU Center, Georgia Institute of Technology, January 1999.Google Scholar
  23. 23.
    R. Ronfard and J. Rossignac, Full range approximation of triangulated polyhedra. In Proceedings of Eurographics ’96, pp. 67–76, 1996Google Scholar
  24. 24.
    M. Garland and P. S. Heckbert, Surface simplification using quadric error metrics. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216, 1997.Google Scholar
  25. 25.
    M. Garland and Y. Zhou, Quadric-based simplification in any dimension, ACM Transactions on Graphics, Vol. 24, No. 2, 2005.Google Scholar
  26. 26.
    P. Lindstrom and G. Turk, Fast and memory efficient polygonal simplification, Proceedings of the Conference on Visualization ’98, Research Triangle Park, North Carolina, United States, pp. 279–286, 1998.Google Scholar
  27. 27.
    N. Dyn, D. Levin, and John A. Gregory, A butterfly subdivision scheme for surface interpolation with tension control, ACM Transactions on Graphics, 9(2):160–169, April 1990.Google Scholar
  28. 28.
    P. Alliez and M. Desbrun, Progressive compression for lossless transmission of triangle meshes. In SIGGRAPH ’2001 Conference Proceedings, pp. 198–205, 2001.Google Scholar
  29. 29.
    M. Lounsbery, T. D. Derose, and J. Warren, Multiresolution Analysis for surfaces of arbitrary topological type, ACM Transactions on Graphics Vol. 16, No. 1 , pp. 34–73, 1997. Originally available as TR-93-10-05, October, 1993, Department of Computer Science and Engineering, University of Washington.Google Scholar
  30. 30.
    P. Schröder and W. Sweldens, Digital Geometry Processing, Course Notes, ACM SIGGRAPH, 2001.Google Scholar
  31. 31.
    S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.Google Scholar
  32. 32.
    E. J. Stollnitz, T. DeRose and D. H. Salesi, Wavelets for Computer Graphics: Theory and Applications, Morgan Kaufmann Publishers Inc., 1996.Google Scholar
  33. 33.
    D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens, Subdivision for Modeling and Animation, Course Notes, ACM SIGGRAPH, 2000.Google Scholar
  34. 34.
    A. Khodakovsky, P. Schröder and W. Sweldens, Progressive geometry compression Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 271–278, July 2000.Google Scholar
  35. 35.
    A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar and D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces. In Proceedings of ACM SIGGRAPH 98, 95–104 1998.Google Scholar
  36. 36.
    C. Loop, Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis, University of Utah, August 1987.Google Scholar
  37. 37.
    A. Said and W. A. Pearlman, An image multiresolution representaion for lossless and lossy compression, IEEE Transaction on Image Processing, Vol. 5, pp. 1303–1310, September 1996.CrossRefGoogle Scholar
  38. 38.
    P. Cignoni , C. Rocchini , and Scopigno, R., Metro: Measuring error on simplified surfaces. Computer Graphics Forum 17, 2, 167–174, 1998.CrossRefGoogle Scholar
  39. 39.
    A. Khodakovsky and I. Guskov, Normal Mesh Compression. submitted for publication, Scholar
  40. 40.
    I. Guskov, K. Vidim, W. Sweldens and P. Schröder, Normal meshes, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 95–102, July 2000.Google Scholar
  41. 41.
    F. Morán and N. García, Comparison of wavelet-based three-dimensional model coding techniques, IEEE Transaction on Circuits and Systems for Video Technology, Vol. 14, No. 7, July 2004.Google Scholar
  42. 42.
    M. Isenburg and P. Lindstrom, Streaming meshes. Proceedings of Visualization’05, pp. 231–238, October 2005.Google Scholar
  43. 43.
    H. Vo, S. Callahan, P. Lindstrom, V. Pascucci, and C. Silva, Streaming simplification of tetrahedral meshes, IEEE Transactions on Visualization and Computer Graphics, Vol. 13, No. 1, pp. 145–155, January/February 2007.Google Scholar
  44. 44.
    M. Isenburg, P. Lindstrom, J. Snoeyink, Streaming compression of triangle meshes. Proceedings of 3rd Symposium on Geometry Processing, pp. 111–118, July 2005.Google Scholar
  45. 45.
    M. Isenburg, P. Lindstrom, S. Gumhold and J. Shewchuk, Streaming compression of tetrahedral volume meshes. Proceedings of Graphics Interface 2006, pp. 115–121, June 2006.Google Scholar
  46. 46.
    M. Bourges-Sevenier and E. S. Jang, An introduction to the MPEG-4 animation framework extension, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, pp. 928–936, 2004.CrossRefGoogle Scholar
  47. 47.
    E. S. Jang, J. D. K. Kim, S. Y. Jung, M. J. Han, S. O. Woo and S. J. Lee, Interpolator data compression for MPEG-4 animation, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, 2004.Google Scholar
  48. 48.
    L. Ibarria and J. Rossignac, Dynapack: Space-time compression of the 3d animations of triangle meshes with fixed connectivity. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003.Google Scholar
  49. 49.
    L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, Out-Of-Core compression and decompression of large n-dimensional scalar fields. In Proceedings of Eurographics 2003, 2003.Google Scholar
  50. 50.
    N. Stefanoski and J. Ostermann, Connectivity-guided predictive compression of dynamic 3D meshes. Proceedings of ICIP ’06 – IEEE International Conference on Image Processing, Atlanta, October 2006.Google Scholar
  51. 51.
    J. Rossignac, A. Safonova and A. Szymczak, 3D compression made simple: Edgebreaker on a corner table. Proceedings of Shape Modeling International Conference, pp. 278–283, 2001.Google Scholar
  52. 52.
    J. E. Lengyel, Compression of time-dependent geometry. In Proceedings of the 1999 Symposium on Interactive 3D Graphics, pp. 89–95, ACM Press, 1999.Google Scholar
  53. 53.
    J. Zhang and C. B. Owen, Octree-based Animated Geomtery Compression, DCC’04, Data Compression Conference, Snowbird, Utah, USA, pp. 508–517, 2004.Google Scholar
  54. 54.
    K. Müller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand, Rate-distortion-optimized predictive compression of dynamic 3D mesh sequences, Invited Paper, Signal Processing: Image Communication, Vol. 21, is. 9, pp. 812–828, Special Issue on Interactive representation of still and dynamic scenes, October 2006.Google Scholar
  55. 55.
    K. Müller, A. Smolic, M. Kautzner, P. Eisert and T. Wiegand, Predictive compression of dynamic 3D meshes. In Proceedings of International Conference on Image Processing, pp. 621–624, 2005.Google Scholar
  56. 56.
    J. Zhang and C. B. Owen, Hybrid coding for animated polygonal meshes: Combining delta and octree, International Conference on Information Technology: Coding and Computing (ITCC’05) – Vol. I, pp. 68–73, 2005.CrossRefGoogle Scholar
  57. 57.
    D. Huttenlocher, G. Klanderman, and W. Rucklidge, Comparing images using the hausdorff distance, IEEE Journal of Pattern Analysis and Machine Intelligence, Vol. 15, No. 9, pp. 850–863, 1993.CrossRefGoogle Scholar
  58. 58.
    N. Aspert, D. Santa-Cruz, and T. Ebrahimi, MESH: Measuring errors between surfaces using the Hausdorff distance. Proceedings of the IEEE International Conference on Multimedia and Expo, Vol. I, pp. 705–708, 2002.Google Scholar
  59. 59.
    A. Shamir and V. Pascucci, Temporal and spatial level of details for dynamic meshes. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 77–84, ACM Press, 2001.Google Scholar
  60. 60.
    I. Guskov and A. Khodakovsky, Wavelet compression of parametrically coherent mesh sequences. In SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 183–192, ACM Press, 2004.Google Scholar
  61. 61.
    A. Mohr and M. Gleicher, Deformation Sensitive Decimation, Technical Report 4/7/2003, University of Wisconsin, Madison,yv2003.Google Scholar
  62. 62.
    S. Kircher and M. Garland, Progressive Multiresolution Meshes for Deforming Surfaces, ACM/Eurographics Symposium on Computer Animation, pp. 191–200, 2005.Google Scholar
  63. 63.
    Z. Karni and C. Gotsman, Compression of Soft-Body Animation Sequences, Elsevier Computer & Graphics 28, pp. 25–34, 2004.CrossRefGoogle Scholar
  64. 64.
    M. Sattler, R. Sarlette, and R. Klein, Simple and Efficient Compression of Animation Sequences, Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2005.Google Scholar
  65. 65.
    N. Stefanoski, X. Liu, P. Klie, and J. Ostermann, Scalable Linear Predictive Coding of Time-Consistent 3D Mesh Sequences, submitted to 3DTV CON – The True Vision, Capture, Transmission, and Display of 3D Video, Kos Island, Greece, May 2007.Google Scholar
  66. 66.
    I. Guskov, W. Sweldens, and P. Schröder, Multiresolution signal processing for meshes. Proceedings of SIGGRAPH (1999), pp. 325–334, 1999.Google Scholar
  67. 67.
    H. M. Briceno, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe, Geometry videos: A new representation for 3d animations. In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 136–146. Eurographics Association, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aljoscha Smolic
    • 1
  • Ralf Sondershaus
    • 2
  • Nikolče Stefanoski
    • 3
  • Libor Váša
    • 4
  • Karsten Müller
    • 1
  • Jörn Ostermann
    • 3
  • Thomas Wiegand
    • 1
  1. 1.Image Processing DepartmentFraunhofer-Institute for Telecommunications, Heinrich-Hertz-InstitutEinsteinufer 37Germany
  2. 2.Lehrstuhl Graphische kInteraktive SystemeWilhelm-Schickard-InstitutUniversität Tübingen Sand 14Germany
  3. 3.Institut für Informationsverarbeitung, Fakultät für Elektrotechnik und InformatikLeibniz Universität Hannover30167 HannoverGermany
  4. 4.Department of Computer Science and Engineering, Faculty of Applied ScienceUniversity of West BohemiaUniverzitni 8Czech Republic

Personalised recommendations