Advertisement

A Survey of Job Scheduling in Grids

  • Congfeng Jiang
  • Cheng Wang
  • Xiaohu Liu
  • Yinghui Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4505)

Abstract

The problem of optimally scheduling tasks onto heterogeneous resources in grids, minimizing the makespan of these tasks, has proved to be NP-complete. There is no best scheduling algorithm for all grid computing systems. An alternative is to select an appropriate scheduling algorithm to use in a given grid environment because of the characteristics of the tasks, machines and network connectivity. In this paper a survey is presented on the problem and the different aspects of job scheduling in grids such as (a) fault-tolerance; (b) security; and (c) simulation of grid job scheduling strategies are discussed. This paper also presents a discussion on the future research topics and the challenges of job scheduling in grids.

Keywords

heterogeneous computing task scheduling fault-tolerance security simulation load-balancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. International Journal of High Performance Computing Applications 15(3), 200–222 (2001)CrossRefGoogle Scholar
  2. 2.
    Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on nonidentical processors. Journal of Association of Computing Machine 24(2), 280–289 (1977)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B.: A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel and Distributed Computing 61(6), 810–837 (2001)CrossRefGoogle Scholar
  4. 4.
    Kwok, Y.K., Maciejewski, A.A., Siegel, H.J., Ahmad, I., Ghafoor, A.: A semi-static approach to mapping dynamic iterative tasks onto heterogeneous computing system. Journal of Parallel and Distributed Computing 66, 77–98 (2006)zbMATHGoogle Scholar
  5. 5.
    Dogana, A., Özgüner, F.: Scheduling of a meta-task with QoS requirements in heterogeneous computing systems. Journal of Parallel and Distributed Computing 66(2), 181–196 (2006)CrossRefGoogle Scholar
  6. 6.
    Song, S., Hwang, K., Kwok, Y.K.: Risk-Resilient Heuristics and Genetic Algorithms for Security-Assured Grid Job scheduling. IEEE Transactions on Computers 55(6), 703–719 (2006)CrossRefGoogle Scholar
  7. 7.
    Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of job-scheduling strategies for grid computing. In: Buyya, R., Baker, M. (eds.) GRID 2000. LNCS, vol. 1971, pp. 191–202. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Legrand, A., Quinson, M., Casanova, H., Fujiwara, K.: The SlMGRlD project simulation and deployment of distributed applications. In: Proceedings of 15th IEEE International Symposium on High Performance Distributed Computing (HPDC06), pp. 385–386 (2006)Google Scholar
  9. 9.
    Fujimoto, N., Hagihara, K.: Near-Optimal Dynamic Task Scheduling of Independent Coarse-Grained Tasks onto a Computational Grid. In: Proceedings of International Conference on Parallel Processing (ICPP2003), pp. 391–398 (2003)Google Scholar
  10. 10.
    Abawajy, J.H.: Fault-Tolerant Dynamic Job Scheduling Policy. In: Hobbs, M., Goscinski, A.M., Zhou, W. (eds.) ICA3PP 2005. LNCS, vol. 3719, pp. 165–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kaya, K., Aykanat, C.: Iterative-improvement-based heuristics for adaptive scheduling of tasks sharing files on heterogeneous master–slave platforms. IEEE Transactions on Parallel and Distributed Systems 17(8), 883–896 (2006)CrossRefGoogle Scholar
  12. 12.
    Shivle, S., Siegel, H.J., et al.: Static allocation of resources to communicating subtasks in a heterogeneous ad hoc grid environment. Journal of Parallel and Distributed Computing 66, 600–611 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wolski, R.: Forecasting network performance to support dynamic scheduling using the Network Weather Service. In: Proceedings of the 6th IEEE International Symposium on High Performance Distributed Computing (HPDC97), pp. 316–325 (1997)Google Scholar
  14. 14.
    Schopf, J.M., D’Arcy, M., Miller, N., et al.: Monitoring and Discovery in a Web Services Framework: Functionality and Performance of the Globus Toolkit’s MDS4, Available at http://www-unix.mcs.anl.gov/~schopf/Pubs/mds-sc05.pdf
  15. 15.
    Thomas, N.: Modeling job allocation where service duration is unknown. In: Proceedings of 20th IEEE International Parallel and Distributed Processing Symposium, IPDPS’06 (2006)Google Scholar
  16. 16.
    Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On advantages of grid computing for parallel job scheduling. In: Proceedings of 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2002), pp. 39–46 (2002)Google Scholar
  17. 17.
    Beaumont, O., Carter, L., Ferrante, J., et al.: Centralized versus distributed schedulers for multiple bag-of-task applications. In: Proceedings of 20th IEEE International Parallel and Distributed Processing Symposium, IPDPS’06 (2006)Google Scholar
  18. 18.
    Buyya, R., Abramson, D., Venugopal, S.: The Grid Economy. Proceedings of the IEEE 93(3), 698–714 (2005)CrossRefGoogle Scholar
  19. 19.
    Hwang, S., Kesselman, C.: A Flexible Framework for Fault Tolerance in the Grid. Journal of Grid Computing 1(3), 251–272 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Jones, P.L., Harrison, A.: The application of knowledge-based techniques to the monitoring of computers in a large heterogeneous distributed environment. Knowledge-Based Systems 19(7), 565–575 (2006)CrossRefGoogle Scholar
  21. 21.
    Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling strategies in a Grid-based resource model. IEE Proceedings: Software 151(5), 232–239 (2004)CrossRefGoogle Scholar
  22. 22.
    Arenas, A.: State of the art survey on trust and security in Grid computing systems. Technical Report (RAL-TR-2006-008), CCLRC (2006)Google Scholar
  23. 23.
    Song, S., Hwang, K.: Trusted grid computing with security assurance and resource optimization. In: Proceedings of ISCA 17th International Conference on Parallel and Distributed Computing Systems (ISCA PDCS04), pp. 110–117 (2004)Google Scholar
  24. 24.
    Song, S., Hwang, K., Kwok, Y.K.: Trusted grid computing with security binding and trust integration. Journal of Grid Computing 3(1), 53–73 (2005)CrossRefGoogle Scholar
  25. 25.
    Hwang, K., Kwok, Y.-K., Song, S., Chen, M.C.Y., Chen, Y., Zhou, R., Lou, X.: GridSec: Trusted Grid Computing with Security Binding and Self-defense Against Network Worms and DDoS Attacks. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 187–195. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Power, D.J., Politou, E.A., Slaymaker, M.A., et al.: Securing web services for deployment in health grids. Future Generation Computer Systems 22, 547–570 (2006)CrossRefGoogle Scholar
  27. 27.
    Zanikolas, S., Sakellariou, R.: Application-Level Simulation Modeling of Large Grids. In: Proceedings of 5th International Symposium on Cluster Computing and Grid (CCGrid’05), pp. 582–589 (2005)Google Scholar
  28. 28.
    Bolosky, W.J., Douceur, J.R., Ely, D., et al.: Feasibility of a Serverless Distributed File System Deployed on an Existing Set of Desktop PCs. ACM SIGMETRICS Performance Evaluation Review (Special issue on proceedings of ACM SIGMETRICS 2000) 28(1), 34–43 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Congfeng Jiang
    • 1
  • Cheng Wang
    • 1
  • Xiaohu Liu
    • 1
  • Yinghui Zhao
    • 1
  1. 1.Engineering Computing and Simulation Institute, Huazhong University of Science and Technology, Wuhan 430074China

Personalised recommendations