Embedding Reject Option in ECOC Through LDPC Codes

  • Claudio Marrocco
  • Paolo Simeone
  • Francesco Tortorella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4472)


Error Correcting Output Coding (ECOC) is an established technique to face a classification problem with many possible classes decomposing it into a set of two class subproblems. In this paper, we propose an ECOC system with a reject option that is performed by taking into account the confidence degree of the dichotomizers. Such a scheme makes use of a coding matrix based on Low Density Parity Check (LDPC) codes that can also be usefully employed to implement an iterative recovery strategy for the binary rejects. The experimental results have confirmed the effectiveness of the proposed approach.


ECOC reject option LDPC coding theory multiple classifier systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journ. Artif. Intell. Research 2, 263–286 (1995)zbMATHGoogle Scholar
  2. 2.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. In: Proc. 17th Intl. Conf. on Mach. Learn., pp. 9–16 (2000)Google Scholar
  3. 3.
    Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Patt. Anal. and Mach. Intell. 28(6), 1001–1007 (2006)CrossRefGoogle Scholar
  4. 4.
    García, J., et al.: Beyond Boosting: Recursive ECOC Learning Machines. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 62–71. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf. Theory 16, 41–46 (1970)zbMATHCrossRefGoogle Scholar
  6. 6.
    Karu, K., Jain, A.K.: Fingerprint Classification. Patt. Rec. 29, 389–404 (1996)CrossRefGoogle Scholar
  7. 7.
    Golfarelli, M., Maio, D., Malton, D.: On the error-reject trade-off in biometric verification systems. IEEE Trans. Patt. Anal. and Mach. Intell. 19, 786–796 (1997)CrossRefGoogle Scholar
  8. 8.
    Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–547 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shokrollahi, A.: LDPC Codes: An Introduction (April 2003)Google Scholar
  10. 10.
    Richardson, T., Urbanke, R.: Modern Coding Theory. Draft (December 2006)Google Scholar
  11. 11.
    Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cambridge (1963)Google Scholar
  12. 12.
    Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases (1998),
  13. 13.
    Vezhnevets, A., Vezhnevets, V.: Modest AdaBoost - Teaching AdaBoost to Generalize Better. In: Graphicon-2005, Novosibirsk Akademgorodok, Russia (2005),

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Claudio Marrocco
    • 1
  • Paolo Simeone
    • 1
  • Francesco Tortorella
    • 1
  1. 1.DAEIMI, Università degli Studi di Cassino, Via G. Di Biasio 43, 03043 Cassino (FR)Italia

Personalised recommendations